PSI - Issue 68
Cainã Bemfica et al. / Procedia Structural Integrity 68 (2025) 1188 – 1195 Ludovic Vincent et al. / Structural Integrity Procedia 00 (2025) 000–000
1195
8
steels. Nuclear Materials and Energy 37, 101511. https://doi.org/10.1016/j.nme.2023.101511 Delattre, J.-B., 2023. Étude expérimentale et modélisation de la relation entre conditions de traitement thermique, microstructure et ténacité d’aciers faiblement alliés trempés revenus (Thèse de doctorat). CEA Saclay. Ecole des Mines de Paris. Forget, P., Marini, B., Vincent, L., 2016. Application of local approach to fracture of an RPV steel: effect of the crystal plasticity on the critical carbide size. Procedia Structural Integrity 2, 1660–1667. https://doi.org/10.1016/j.prostr.2016.06.210 Lee, K.-H., Park, S., Kim, M.-C., Lee, B.-S., Wee, D.-M., 2011. Characterization of transition behavior in SA508 Gr.4N Ni–Cr–Mo low alloy steels with microstructural alteration by Ni and Cr contents. Materials Science and Engineering: A 529, 156–163. https://doi.org/10.1016/j.msea.2011.09.012 Lee, S., Kim, S., Hwang, B., Lee, B.S., Lee, C.G., 2002. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Materialia 50, 4755–4762. Li, C., Han, L., Yan, G., Liu, Q., Luo, X., Gu, J., 2016. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C. Journal of Nuclear Materials 480, 344–354. https://doi.org/10.1016/j.jnucmat.2016.08.039 Li, C.W., Han, L.Z., Luo, X.M., Liu, Q.D., Gu, J.F., 2016. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel. Journal of Nuclear Materials 477, 246–256. https://doi.org/10.1016/j.jnucmat.2016.05.017 Naylor, J.P., 1979. The Influence of the Lath Morphology on the Yield Stress and Transition Temperature of Martensitic-Bainitic Steels. Metallurgical Transactions A 10A, 861–873. Petch, N.J., 1986. The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel. Acta Metallurgica 34, 1387–1393. https://doi.org/10.1016/0001-6160(86)90026-X Ren, S.C., Marini, B., Forget, P., 2022. Modelling the effect of macro-segregation on the fracture toughness of heavy forgings using FFT based crystal plasticity simulations. Engineering Fracture Mechanics 272, 108694. https://doi.org/10.1016/j.engfracmech.2022.108694 Tomimatsu, M., Hirota, T., Hardin, T., Todeschini, P., 2015. 4 - Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs), in: Soneda, N. (Ed.), Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants. Woodhead Publishing, pp. 57–106. https://doi.org/10.1533/9780857096470.2.57 Yan, G., Han, L., Li, C., Luo, X., Gu, J., 2017. Effect of Macrosegregation on the Microstructure and Mechanical Properties of a Pressure-Vessel Steel. Metallurgical and Materials Transactions A 48, 3470–3481. https://doi.org/10.1007/s11661-017-4119-5 Zhang, X.Z., Knott, J.F., 1999. Cleavage fracture in bainitic and martensitic microstructures. Acta Materialia 47, 3483–3495. https://doi.org/10.1016/S1359-6454(99)00200-1 Zinkle, S.J., Was, G.S., 2013. Materials challenges in nuclear energy. Acta Materialia 61, 735–758. https://doi.org/10.1016/j.actamat.2012.11.004
Made with FlippingBook - Online Brochure Maker