PSI - Issue 68
Berkehan Tatli et al. / Procedia Structural Integrity 68 (2025) 1140–1146
1146
Tatli and Yalcinkaya / Structural Integrity Procedia 00 (2024) 000–000
7
Acknowledgments
The authors gratefully acknowledge the contribution of Enes Gunay for the implementation of Strain Gradient Crystal Plasticity Model.
References
Aydiner, I.U., Tatli, B., Yalc¸inkaya, T., 2023. Micromechanical modeling of failure in dual phase steels, in: Materials Research Proceedings, pp. 1443–1452. Aydiner, I.U., Tatli, B., Yalc¸inkaya, T., 2024. Investigation of failure mechanisms in dual-phase steels through cohesive zone modeling and crystal plasticity frameworks. International Journal of Plasticity 174, 103898. Barrera, O., Bombac, D., Chen, Y., Da ff , T.D., Galindo-Nava, E., Gong, P., Haley, D., Horton, R., Katzarov, I., Kermode, J.R., Liverani, C., Stopher, M., Sweeney, F., 2018. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Journal of Materials Science 53, 6251–6290. Brocks, W., Falkenberg, R., Scheider, I., 2012. Coupling aspects in the simulation of hydrogen-induced stresscorrosion cracking. Procedia IUTAM 3, 11–24. Chatzidouros, E.V., Traidia, A., Devarapalli, R.S., Pantelis, D.I., Steriotis, T.A., Jouiad, M., 2018. E ff ect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions. International Journal of Hydrogen Energy 43, 5747–5759. Di Leo, C.V., Anand, L., 2013. Hydrogen in metals: A coupled theory for species di ff usion and large elastic–plastic deformations. International Journal of Plasticity 43, 42–69. Djukic, M.B., Bakic, G.M., Sijacki Zeravcic, V., Sedmak, A., Rajicic, B., 2019. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion. Engineering Fracture Mechanics 216, 106528. Gao, H., Cao, W., Fang, C., de los Rios, E.R., 1994. Analysis of crack tip hydrogen distribution under i / ii mixed mode loads. Fatigue & Fracture of Engineering Materials & Structures 17, 1213–1220. Gu¨nay, E., O¨ zdemir, M., Yalc¸inkaya, T., 2024. Nanoscratching of polycrystalline copper examined through strain gradient crystal plasticity. Procedia Structural Integrity 61, 34–41. Han, C.S., Gao, H., Huang, Y., Nix, W.D., 2005. Mechanism-based strain gradient crystal plasticity—i. theory. Journal of the Mechanics and Physics of Solids 53, 1188–1203. Lin, M., Yu, H., Wang, X., Wang, R., Ding, Y., Alvaro, A., Olden, V., He, J., Zhang, Z., 2022. A microstructure informed and mixed-mode cohesive zone approach to simulating hydrogen embrittlement. International Journal of Hydrogen Energy 47, 17479–17493. Lufrano, J., Sofronis, P., 1998. Enhanced hydrogen concentrations ahead of rounded notches and cracks—competition between plastic strain and hydrostatic stress. Acta Materialia 46, 1519–1526. Martin, M.L., Somerday, B.P., Ritchie, R.O., Sofronis, P., Robertson, I.M., 2012. Hydrogen-induced intergranular failure in nickel revisited. Acta Materialia 60, 2739–2745. Moriconi, C., He´na ff , G., Halm, D., 2014. Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals. Interna tional Journal of Fatigue 68, 56–66. Neeraj, T., Srinivasan, R., Li, J., 2012. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding. Acta Materialia 60, 5160–5171. Park, K., Paulino, G.H., Roesler, J.R., 2009. A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics and Physics of Solids 57, 891–908. Quey, R., Dawson, P.R., Barbe, F., 2011. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering 200, 1729–1745. Ronevich, J.A., Somerday, B.P., San Marchi, C.W., 2016. E ff ects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels. International Journal of Fatigue 82, 497–504. Tatli, B., 2024. Computational modelling of hydrogen-induced failure in metallic materials. Master’s thesis. Middle East Technical University. Yalc¸inkaya, T., Tatli, B., U¨ nsal, I.E., Aydiner, I.U., 2022. Crack Initiation and Propagation in Dual-phase Steels Through Crystal Plasticity and Cohesive Zone Frameworks. Procedia Structural Integrity 42, 1651–1659. Yalc¸inkaya, T., C¸ akmak, S.O., Tekog˘lu, C., 2021. A crystal plasticity based finite element framework for rve calculations of two-phase materials: Void nucleation in dual-phase steels. Finite Elements in Analysis and Design 187, 103510.
Made with FlippingBook - Online Brochure Maker