PSI - Issue 68

Xiangnan Pan et al. / Procedia Structural Integrity 68 (2025) 1038–1044 X. Pan et al. / Structural Integrity Procedia 00 (2025) 000–000

1044

7

Mayer, H., 2016. Recent developments in ultrasonic fatigue. Fatigue Fract. Eng. Mater. Struct. 39(1), 3–29. McDowell, D., Dunne, F., 2010. Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32, 1521–1542. Meyers, M., Chawla, K., 2009. Mechanical Behavior of Materials. 2nd ed. Cambridge University Press, Cambridge, UK. Molaei, R., Fatemi, A., Sanaei, N., Pegues, J., Shamsaei, N., Shao, S., Li, P., Warner, D., Phan, N., 2020. Fatigue of additive manufactured Ti-6Al 4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. Int. J. Fatigue 132, 105363. Murakami, Y., 2002. Metal fatigue: Effects of small defects and nonmetallic inclusions. Elsevier, Oxford, UK. Naito, T., Ueda, H., Kikuchi, M., 1983. Observation of fatigue fracture surface of carburized steel. J. Soc. Mater. Sci. 32, 1162–1166. (in Japanese) Neal, D., Blenkinsop, P., 1976. Internal fatigue origins in α-β titanium alloys. Acta Metall. 24, 59–63. Nikitin, A., Palin-Luc, T., Shanyayskiy, A., 2016. Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes. Int. J. Fatigue 93, 318–325. Pan, X., Su, H., Sun, C., Hong, Y., 2018. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy. Int. J. Fatigue 115, 67–78. Pan, X., Hong, Y., 2019. High-cycle and very-high-cycle fatigue behaviour of a titanium alloy with equiaxed microstructure under different mean stresses. Fatigue Fract. Eng. Mater. Struct. 42(9), 1950–1964. Pan, X., Xu, S., Qian, G., Nikitin, A., Shanyavskiy, A., Palin-Luc, T., Hong, Y., 2020a. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Mater. Sci. Eng. A-struct. 798, 140110. Pan, X., Qian, G., Wu, S., Fu, Y., Hong, Y., 2020b. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Sci. Rep. 10, 4742. Pan, X., Qian, G., Hong, Y., 2021. Nanograin formation in dimple ridges due to local severe-plastic-deformation during ductile fracture. Scripta Mater. 194, 113631. Pan, X., Du, L., Qian, G., Hong, Y., 2024a. Microstructure features induced by fatigue crack initiation up to very-high-cycle regime for an additively manufactured aluminium alloy. J. Mater. Sci. Technol. 173, 247–260. Pan, X., Su, H., Liu, X., Hong, Y., 2024b. Multi-scale fatigue failure features of titanium alloys with equiaxed or bimodal microstructures from low-cycle to very-high-cycle loading numbers. Mater. Sci. Eng. A-struct. 890, 145906. Pan, X., Hong, Y., 2024c. High-cycle and very-high-cycle fatigue of an additively manufactured aluminium alloy under axial cycling at ultrasonic and conventional frequencies. Int. J. Fatigue 185, 108363. Pan, X., Xu, S., Nikitin, A., Shanyavskiy, A., Palin-Luc, T., Hong, Y., 2024d. Crack initiation induced nanograins and facets of a titanium alloy with lamellar and equiaxed microstructure in very-high-cycle fatigue. Mater. Lett. 357, 135769. Pegues, J., Shao, S., Shamsaei, N., Sanaei, N., Fatemi, A., Warner, D., Li, P., Phan, N., 2020. Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. Int. J. Fatigue 132, 105358. Raabe, D., 1998. Computational Materials Science: the Simulation of Materials, Microstructures and Properties. Wiley-VCH Verlag, Weinheim, Germany. Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., Wong, S., Maiti, T., Ebrahimi, A., Hochrainer, T., Fabritius, H.-O., Nikolov, S., Friák, M., Fujita, N., Grilli, N., Janssens, K., Jia, N., Kok, P., Ma, D., Meier, F., Werner, E., Stricker, M., Weygand, D., Raabe, D., 2019. DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comp. Mater. Sci. 158, 420–478. Sakai, T., 2023. Historical review and future prospect for researches on very high cycle fatigue of metallic materials. Fatigue Fract. Eng. Mater. Struct. 46(4), 1217–1255. Schijve, J., 2009. Fatigue of Structures and Materials. 2nd ed. Springer Netherlands, Wijdenes, The Netherlands. Suresh, S., 1998. Fatigue of Materials. 2nd ed. Cambridge University Press, Cambridge, UK. Tao, Z., Wang, Z., Pan, X., Su, T., Long, X., Liu, B., Tang, Q., Ren, X., Sun, C., Qian, G., Hong, Y., 2024. A new probabilistic control volume scheme to interpret specimen size effect on fatigue life of additively manufactured titanium alloys. Int. J. Fatigue 183, 108262. Teng, X., Pang, J., Gao, C., Li, S., Zhang, Z., In press. Fatigue crack initiation site transition of high-strength steel under very high-cycle fatigue. Fatigue Fract. Eng. Mater. Struct. DOI: 10.1111/ffe.14437. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J., Kruth, J., 2010. A study of the microstructural evolution during selective laser melting of Ti 6Al-4V. Acta Mater. 58, 3303–3312. Toyserkani, E., Sarker, D., Ibhadode, O., Liravi, F., Russo, P., Taherkhani, K., 2021. Metal Additive Manufacturing. Wiley, Hoboken, NJ, USA. Wu, G., Shi, C., Sha, W., Sha, A., Jiang, H., 2013. Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys. Mater. Design 46, 668–674. Wu, Y., He, W., Ma, H., Nie, X., Liang, X., Pan, J., Wang, S., Shang, M., Cheng, L., 2024. Titanium alloy materials with very high cycle fatigue: A review. Materials 17(12), 2987. Xu, W., Lui, E., Pateras, A., Qian, M., Brandt, M., 2017. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 125, 390–400. Yadroitsev, I., Yadroitsava, I., Du Plessis, A., MacDonald, E., 2021. Fundamentals of Laser Powder Bed Fusion of Metals. Elsevier, Amsterdam. Zhao, Q., Sun, Q., Xin, S., Chen, Y., Wu, C., Wang, H., Xu, J., Wan, M., Zeng, W., Zhao, Y., 2022. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater. Sci. Eng. A-struct 845, 143260. Zhao, Y., Chen, Y., Zhang, X., Zeng, W., Wang, L., 2012. Phase Transformation and Heat Treatment of Titanium Alloys. Central South University Press, Changsha, China. (in Chinese)

Made with FlippingBook - Online Brochure Maker