PSI - Issue 68
Sakari Pallaspuro et al. / Procedia Structural Integrity 68 (2025) 802–808 Pallaspuro S. et al./ Structural Integrity Procedia 00 (2025) 000–000
808
7
Acknowledgements The study was supported by Business Finland Oy project FOSSA II – Fossil-Free Steel Applications (Dno. 5562/31/2023). N. Aho acknowledges the funding of The Association of Finnish Steel and Metal Producers (KoViS project). The technical staff of the Materials and Mechanical Engineering unit at the University of Oulu, namely T.T. Nyo, J. Paavola, and I. Alasaarela, are thanked for their help with the experiments and sample preparation. References Dyson, D. J., & Holmes, B. (1970). Effect of alloying additions on the lattice parameter of austenite. Journal of Iron and Steel Institute , 208 (5), 469–474. Forouzan, F., Vuorinen, E., & Mücklich, F. (2017). Post weld-treatment of laser welded AHSS by application of quenching and partitioning technique. Materials Science and Engineering: A , 698 , 174–182. https://doi.org/10.1016/J.MSEA.2017.05.053 Ghosh, S., Kaikkonen, P., Javaheri, V., Kaijalainen, A., Miettunen, I., Somani, M., Kömi, J., & Pallaspuro, S. (2022). Design of tough, ductile direct quenched and partitioned advanced high-strength steel with tailored silicon content. Journal of Materials Research and Technology , 17 , 1390–1407. https://doi.org/10.1016/J.JMRT.2022.01.073 Javaheri, V., Pallaspuro, S., Sadeghpour, S., Ghosh, S., Sainio, J., Latypova, R., & Kömi, J. (2023). Rapid tempering of a medium-carbon martensitic steel: In-depth exploration of the microstructure – mechanical property evolution. Materials & Design , 231 , 112059. https://doi.org/10.1016/J.MATDES.2023.112059 John, M. K., Kuruveri, U. B., Menezes, P. L., Zhou, W., Baltazar-Hernández, V. H., Kumar Perka, A., John, M., Kuruveri, U. B., & Menezes, P. L. (2022). Advanced High-Strength Steels for Automotive Applications: Arc and Laser Welding Process, Properties, and Challenges. Metals 2022, Vol. 12, Page 1051 , 12 (6), 1051. https://doi.org/10.3390/MET12061051 Kantanen, P., Somani, M., Kaijalainen, A., Haiko, O., Porter, D., & Kömi, J. (2019). Microstructural characterization and mechanical properties of direct quenched and partitioned high-aluminum and high-silicon steels. Metals , 9 (2), 256. https://doi.org/10.3390/met9020256 Khodir, S., Shibayanagi, T., Takahashi, M., Abdel-Aleem, H., & Ikeuchi, K. (2014). Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding. Materials & Design , 60 , 391–400. https://doi.org/10.1016/J.MATDES.2014.03.056 Lohe, D., & Vohringe, O. (2002). Stability of residual stresses. Handbook of Residual Stress and Deformation of Steel , 54–69. https://doi.org/10.1361/hrsd2002p054 Pallaspuro, S., Hesse, A.-C., Engelke, T., Sainio, J., Ghosh, S., Javaheri, V., Dilger, K., & Kömi, J. (2022). Impact toughness of an electron-beam welded 0.2C direct-quenched and partitioned steel. Procedia Structural Integrity , 42 , 895–902. https://doi.org/10.1016/j.prostr.2022.12.113 Qiu, H., Wang, L. N., Qi, J. G., Zuo, H., & Hiraoka, K. (2013). Enhancement of fracture toughness of high-strength Cr–Ni weld metals by strain-induced martensite transformation. Materials Science and Engineering: A , 579 , 71–76. https://doi.org/10.1016/J.MSEA.2013.05.012 Somani, M. C., Porter, D. A., Kömi, J. I., Karjalainen, L. P., & Misra, D. K. (2018). Tough Ductile Ultra High Strength Steels Through Direct Quenching and Partitioning—An Update. Proceedings of the International Conference on Martensitic Transformations , 129–134. https://doi.org/10.1007/978-3-319-76968-4_20 Zurnadzhy, V. I., Efremenko, V. G., Wu, K. M., Azarkhov, A. Y., Chabak, Y. G., Greshta, V. L., Isayev, O. B., & Pomazkov, M. V. (2019). Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel. Materials Science and Engineering: A , 745 , 307–318. https://doi.org/10.1016/J.MSEA.2018.12.106
Made with FlippingBook - Online Brochure Maker