PSI - Issue 68

Stefan Fladischer et al. / Procedia Structural Integrity 68 (2025) 486–492 S. Fladischer et al. / Structural Integrity Procedia 00 (2024) 000–000

492

7

2.00

1.0

1.75

0.9

1.50

0.8

1.25

[ ]

1.00

[mm]

0.7

RO

0

a

RO,single

0.75

0.6

0.50

build direction

experimental

0.5

result

0.25

coincident

experimental

results

0.4

0.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

a)

b)

d

0

[ ]

a

0

Fig. 7. Experimental test results: (a) summary of run-out load levels for interacting cracks with colorized trend lines from Fig. 6; (b) light optical microscopy fractography image of a specimen with a 0 = 1mmand d 0 = 2mm

Ongoing follow up investigations focus on the observed disparity between experimental tests and short crack growth simulations. The presented simulated data sets are extended to cyclic R-curves with di ff erent length scales but also to crack pairs of di ff ering sizes a 0 b 0 . Moreover, a comparative notch fatigue investigation will deal with the application of the theory of critical distances as well as strain energy density methods instead of the presented fracture mechanical approach to the analysis of defect interaction e ff ects.

References

Akiniwa, Y., Zhang, L.M., Tanaka, K., 1997. Prediction of the fatigue limit of cracked specimens based on the cyclic r–curve method. Fatigue & Fracture of Engineering Materials & Structures 20, 1387–1398. doi: 10.1111/j.1460-2695.1997.tb01497.x . Åman, M., Wada, K., Matsunaga, H., Remes, H., Marquis, G., 2020. The influence of interacting small defects on the fatigue limits of a pure iron and a bearing steel. International Journal of Fatigue 135, 105560. doi: 10.1016/j.ijfatigue.2020.105560 . El Haddad, M.H., Topper, T.H., Smith, K.N., 1979. Prediction of non propagating cracks. Engineering Fracture Mechanics 11, 573–584. doi: 10. 1016/0013-7944(79)90081-X . Kitagawa, H., Takahashi, S., 1976. Applicability of fracture mechanics to very small cracks or the cracks in the early stage. Proceedings of the Second International Conference on Mechanical Behavior of Materials , 627–631. Maierhofer, J., Pippan, R., Ga¨nser, H.P., 2014. Modified nasgro equation for physically short cracks. International Journal of Fatigue 59, 200–207. doi: 10.1016/j.ijfatigue.2013.08.019 . McEvily, A.J., Endo, M., Murakami, Y., 2003. On the relationship and the short fatigue crack threshold. Fatigue & Fracture of Engineering Materials & Structures 26, 269–278. doi: 10.1046/j.1460-2695.2003.00636.x . Murakami, Y., 2019. Metal fatigue: E ff ects of small defects and nonmetallic inclusions. Second edition ed., Academic Press an imprint of Elsevier, Amsterdam and London and San Diego, CA. Newman, J.C., 1984. A crack opening stress equation for fatigue crack growth. International Journal of Fracture 24, R131–R135. doi: 10.1007/ BF00020751 . Pippan, R., Hohenwarter, A., 2017. Fatigue crack closure: a review of the physical phenomena. Fatigue & Fracture of Engineering Materials & Structures 40, 471–495. doi: 10.1111/ffe.12578 . Scho¨nbauer, B.M., Yanase, K., Endo, M., 2017. The influence of various types of small defects on the fatigue limit of precipitation-hardened 17-4ph stainless steel. Theoretical and Applied Fracture Mechanics 87, 35–49. doi: 10.1016/j.tafmec.2016.10.003 . Tanaka, K., Akiniwa, Y., 1988. Resistance-curve method for predicting propagation threshold of short fatigue cracks at notches. Engineering Fracture Mechanics 30, 863–876. doi: 10.1016/0013-7944(88)90146-4 . Tanaka, K., Akiniwa, Y., 2003. 4.06 - modeling of fatigue crack growth: Mechanistic models, in: Milne, I., Ritchie, R.O., Karihaloo, B. (Eds.), Comprehensive structural integrity. Elsevier Pergamon, Amsterdam, pp. 165–189. doi: 10.1016/B0-08-043749-4/04032-5 .

Made with FlippingBook - Online Brochure Maker