PSI - Issue 68

Matias Jaskari et al. / Procedia Structural Integrity 68 (2025) 480–485 M. Jaskari et al. / Structural Integrity Procedia 00 (2025) 000–000

485

6

Acknowledgements The authors express their gratitude to the BUSINESS Finland for funding this research through “DREAMS” project, No. 4795/31/2021. Part of the work was conducted using the equipment of Centre of Material Analysis, University of Oulu, Finland. References Beretta, S., Gargourimotlagh, M., Foletti, S., du Plessis, A., Riccio, M., 2020. Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations. International Journal of Fatigue , 139 , 105737. https://doi.org/10.1016/J.IJFATIGUE.2020.105737 Bhandari, L., Gaur, V., 2022. On study of process induced defects-based fatigue performance of additively manufactured Ti6Al4V alloy. Additive Manufacturing , 60 , 103227. https://doi.org/10.1016/J.ADDMA.2022.103227 Jaskari, M., Mäkikangas, J., Järvenpää, A., Mäntyjärvi, K., Karjalainen, P., 2019. Effect of high porosity on bending fatigue properties of 3D printed AISI 316L steel. Procedia Manufacturing , 36 , 33–41. Kumar, P., Jayaraj, R., Suryawanshi, J., Satwik, U. R., McKinnell, J., Ramamurty, U., 2020. Fatigue strength of additively manufactured 316L austenitic stainless steel. Acta Materialia , 199 , 225–239. https://doi.org/10.1016/J.ACTAMAT.2020.08.033 Pei, C., Shi, D., Yuan, H., Li, H., 2019. Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Materials Science and Engineering: A , 759 , 278–287. https://doi.org/10.1016/J.MSEA.2019.05.007 Rautio, T., Jaskari, M., Bhatti, H. A., Mustakangas, A., Keskitalo, M., Järvenpää, A., 2023. Fatigue Performance and Impact Toughness of PBF LB Manufactured Inconel 718. 2023 IEEE International Conference on Robotics and Biomimetics, ROBIO 2023 . https://doi.org/10.1109/ROBIO58561.2023.10354797 Sonntag, N., Piesker, B., Ávila Calderón, L. A., Mohr, G., Rehmer, B., Agudo Jácome, L., Hilgenberg, K., Evans, A., Skrotzki, B., 2024. Tensile and Low-Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature. Advanced Engineering Materials , 26 (10), 2302122. https://doi.org/10.1002/ADEM.202302122 Volpato, G. M., Tetzlaff, U., Fredel, M. C., 2022. A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Additive Manufacturing , 55 , 102871. https://doi.org/10.1016/J.ADDMA.2022.102871 Witkin, D. B., Patel, D., Albright, T. V, Bean, G. E., Mclouth, T., 2019. Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion . https://doi.org/10.1016/j.ijfatigue.2019.105392 Yamashita, Y., Murakami, T., Mihara, R., Okada, M., Murakami, Y., 2018. Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting. International Journal of Fatigue , 117 , 485–495. https://doi.org/10.1016/J.IJFATIGUE.2018.08.002

Made with FlippingBook - Online Brochure Maker