PSI - Issue 68

Atef Hamada et al. / Procedia Structural Integrity 68 (2025) 581–587

586

6

Atef Hamada et al./ Structural Integrity Procedia 00 (2025) 000–000

2. The tensile strength of the steel improved with decreasing FA temperature. Notably, the steel annealed at 1000 °C demonstrated a yield strength (YS) of 340 MPa and a tensile strength (TS) of 750 MPa, along with an impressive ductility of 106%. This exceptional combination of strength and ductility underscores the effectiveness of the FH process in optimizing the mechanical properties of the material. Acknowledgements The authors would like to extend their sincere gratitude to Juha Uusitalo, operator of the Gleeble 3800 thermo mechanical simulator, for his valuable assistance in conducting the experimental FH cycles. We also wish to thank the FMT group at the Kerttu Saalasti Institute for their support in funding the EBSD experiments. References Banis, A., Duran, E.H., Bliznuk, V., Sabirov, I., Petrov, R.H., Papaefthymiou, S., 2019. The Effect of Ultra-Fast Heating on the Microstructure, Grain Size and Texture Evolution of a Commercial Low-C, Medium-Mn DP Steel. Met. 2019, Vol. 9, Page 877 9, 877. https://doi.org/10.3390/MET9080877 Chen, G., Rahimi, R., Xu, G., Biermann, H., Mola, J., 2020. Impact of Al addition on deformation behavior of Fe– Cr–Ni–Mn–C austenitic stainless steel. Mater. Sci. Eng. A 797, 140084. https://doi.org/10.1016/J.MSEA.2020.140084 Dobrzański, L.A., Borek, W., 2012. Thermo-mechanical treatment of Fe–Mn–(Al, Si) TRIP/TWIP steels. Arch. Civ. Mech. Eng. 12, 299–304. https://doi.org/10.1016/J.ACME.2012.06.016 Fabrègue, D., Bouaziz, O., Barbier, D., 2018. Nano-twinned steel exhibits high mechanical properties obtained through ultra-rapid heat treatment. Mater. Sci. Eng. A 712, 765–771. https://doi.org/10.1016/J.MSEA.2017.12.040 Gaggiotti, M., Albini, L., Di Nunzio, P.E., Di Schino, A., Stornelli, G., Tiracorrendo, G., 2022. Ultrafast Heating Heat Treatment Effect on the Microstructure and Properties of Steels. Met. 2022, Vol. 12, Page 1313 12, 1313. https://doi.org/10.3390/MET12081313 Gaggiotti, M., Albini, L., Stornelli, G., Tiracorrendo, G., Landi, L., Di Schino, A., 2023. Ultra-Fast Heating Treatment Effect on Microstructure, Mechanical Properties and Magnetic Characteristics of Non-Oriented Grain Electrical Steels. Appl. Sci. 2023, Vol. 13, Page 9833 13, 9833. https://doi.org/10.3390/APP13179833 Gazder, A.A., Saleh, A.A., Pereloma, E. V., 2013. On the feasibility of twinning nucleation via extrinsic faulting in Hamada, A., Ghosh, S., Ali, M., Jaskari, M., Järvenpää, A., 2022a. Studying the strengthening mechanisms and mechanical properties of dissimilar laser-welded butt joints of medium-Mn stainless steel and automotive high-strength carbon steel. Mater. Sci. Eng. A 856, 143936. https://doi.org/10.1016/J.MSEA.2022.143936 Hamada, A., Jaskari, M., Ali, M., Kaijalainen, A., Järvenpää, A., 2023. Impact of Ultra-Flash Tempering Treatment on the Microstructure and Mechanical Properties of High-Strength Carbon Steel. Mater. Sci. Forum 1105, 53– 59. https://doi.org/10.4028/P-SP4FFB Hamada, A., Khosravifard, A., Ghosh, S., Jaskari, M., Järvenpää, A., Karjalainen, P., 2022b. High-Speed Erichsen Testing of Grain-Refined 301LN Austenitic Stainless Steel Processed by Double-Reversion Annealing. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 53, 2174–2194. https://doi.org/10.1007/S11661-022-06659 5/FIGURES/17 Hamada, A.S., Karjalainen, L.P., 2011. Hot ductility behaviour of high-Mn TWIP steels. Mater. Sci. Eng. A 528, 1819–1827. https://doi.org/10.1016/J.MSEA.2010.11.030 Järvenpää, A., Ghosh, S., Khosravifard, A., Jaskari, M., Hamada, A., 2021. A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing. Mater. Sci. Eng. A 808, 140917. https://doi.org/10.1016/J.MSEA.2021.140917 Jovičević-Klug, P., Puš, G., Jovičević-Klug, M., Žužek, B., Podgornik, B., 2022. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater. Sci. Eng. A twinning-induced plasticity steel. Scr. Mater. 68, 436–439. https://doi.org/10.1016/J.SCRIPTAMAT.2012.11.014

Made with FlippingBook - Online Brochure Maker