PSI - Issue 68
Minghua Cao et al. / Procedia Structural Integrity 68 (2025) 828–834 M. Cao et al. / Structural Integrity Procedia 00 (2025) 000–000
834
7
Drago, A., Pindera, M. J., 2007. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures. Composites Science and Technology 67, 1243–1263. Endo, M., Yanase, K., 2014. Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics 69, 34–43. Frishmuth, R., McLaughlin, P., 1976. Failure analysis of cast irons under general three-dimensional stress states. Journal of Engineering Materials and Technology 98, 69–75. Greenstreet, W., Yahr, G., Valachovic, R., 1973. The behavior of graphite under biaxial tension. Carbon 11, 43–57. Hooputra, H., Gese, H., Dell, H., Werner, H., 2004. A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness 9, 449–464. Kohout, J., 2001. A simple relation for deviation of grey and nodular cast irons from Hooke’s law. Materials Science and Engineering: A 313, 16– 23. Luo, X., Baxevanakis, K., Silberschmidt, V., 2024. Microstructure-Based CZE Model for Crack Initiation and Growth in CGI: Effects of Graphite Particle Morphology and Spacing. Solids 5, 123–139. Palkanoglou, E., Baxevanakis, K., Silberschmidt, V., 2022. Thermal debonding in compacted graphite iron: effect of interaction of graphite inclusions. Procedia Structural Integrity 37, 209–216. Palkanoglou, E., Baxevanakis, K., Silberschmidt, V., 2020. Interfacial debonding in compacted graphite iron: effect of thermal loading. Procedia Structural Integrity 28, 1286–1294. Palkanoglou, E., Baxevanakis, K., Silberschmidt, V., 2022. Thermal debonding of inclusions in compacted graphite iron: effect of matrix phases. Engineering Failure Analysis 106476. Palkanoglou, E., Cao, M., Baxevanakis, K., Silberschmidt, V., 2022. Effect of graphite-particle morphology on thermomechanical performance of compacted graphite iron: numerical modelling, The 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022, Oslo, Norway. Qiu, Y., Pang, J., Li, S., Yang, E., Fu, W., Liang, M., Zhang, Z., 2016. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron. Materials Science and Engineering: A 664, 75–85. Qiu, Y., Pang, J., Yang, E., Li, S., Zhang, Z., 2016. Transition of tensile strength and damaging mechanisms of compacted graphite iron with temperature. Materials Science and Engineering: A 677, 290–301. Rodriguez, F., Boccardo, A., Dardati, P., Celentano, D., Godoy, L., 2018. Thermal expansion of a spheroidal graphite iron: a micromechanical approach. Finite Elements in Analysis and Design 141, 26–36. Schmauder, S., Weber, U., Soppa, E., 2003. Computational micromechanics of heterogeneous materials. Key Engineering Materials 251–252, 415– 422. Seldin, E., 1966. Stress-strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4, 177–191. Seleš, K., Tomić, Z., Tonković, Z., 2021. Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255, 107973. Sirtuli, L., Bello Bermejo, J., Windmark, C., Norgren, S., Ståhl, J., Boing, D., 2024. Machining of Compacted Graphite Iron: A review. Journal of Materials Processing Technology 332, 118553. Tang, C., Liu, L., Yang, Z., Tao, D., Li, J., Guo, Q., Zhen, J., He, Y., He, H., 2022. Surface evolution of vermicular cast iron in ultra-high temperature combustion with different single-pulsing duration. Engineering Failure Analysis 141, 106679. Wu, Y., Li, J., Yang, Z., Guo, Y., Ma, Z., Liang, M., Yang, T., Tao, D., 2019. Thermal conductivity analysis of compacted graphite cast iron after a creep test. Metallurgical and Materials Transactions A 50, 3697–3704. Yang, W., Pang, J., Wang, L., Wang, S., Liu, Y., Hui, L., Li, S., Zhang, Z., 2021. Tensile properties and damage mechanisms of compacted graphite iron based on microstructural simulation. Materials Science and Engineering: A 814, 141244.
Made with FlippingBook - Online Brochure Maker