PSI - Issue 68

T. Fekete et al. / Procedia Structural Integrity 68 (2025) 687–693 T. Fekete et al. / Structural Integrity Procedia 00 (2025) 000–000

693

7

4. Summary The topic of this paper was motivated by the paradigm shift in SIC methodology that requires more and improved quality data from materials testing. For tensile testing, a finely tuned measurement system and an appropriate data acquisition system were developed. By adopting the DT concept, Finite Element models have been constructed to examine the influence of varying initial specimen geometries on the outcomes of the measurements. It can be concluded that the simulations performed on small-size specimens –which were also investigated by experiments– can be used to assess manufacturing-induced geometric imperfections. The results are of considerable importance for future investigations, as they allow identification of uncertainties due to geometrical imperfections of the specimens and those due to the inhomogeneous distribution of material properties. References ASTM E8/E8M-24, 2024. Standard Test Methods for Tension Testing of Metallic Materials , ASTM International, West Conshohocken Bažant, Z.P., Cedolin, L., 1991. S t ab i l ity of S tr uc t u res – Ela sti c , I ne la sti c , F r ac t u re a nd Damag e Th eories – . Oxford University Press, New York, Oxford. Béda, Gy., Kozák, I., Verhás, J., 1995. Continuum Mechanics . Akadémiai Kiadó, Budapest. Cellucci, C., 2018. Theory Building as Problem Solving, In: D. Danks and E. Ippoliti (Eds.), Building Theories , Studies in Applied Philosophy, Epistemology and Rational Ethics 41, Springer International Publishing AG Cham 63–79. https://doi.org/10.1007/978-3-319-72787-5_4 Choung, J.M., Cho, S.R., 2008. Study on true stress correction from tensile tests, Journal of Mechanical Science and Technology 22 1039–1051. Chen X.H., Mai, Y.W., 2013. Fracture Mechanics of Electromagnetic Materials. Nonlinear Field Theory and Applications , Imperial College Press London Fekete, T., Antók D., Tatár, L., Bereczki P., 2024, Investigation on geometric imperfections of tensile test specimens using optical full-field measurements and digital twin-based simulations. Procedia Structural Integrity 54 314–321. Fekete, T., 2023. Towards new Fundamentals for Structural Integrity Calculations of Large-Scale Pressure Systems, Procedia Structural Integrity 48 302–309. Gyarmati, I., 1970. Non-equilibrium Thermodynamics –Field Theory and Variational Principles– . In: Ingenieurwissenschaftliche Bib liothek/Engineering Science Library, Springer Berlin Heidelberg https://doi.org/10.1007/978-3-642-51067-0 IAEA, 2006. Guidelines on Pressurized Thermal Shock Analysis for WWER Nuclear Power Plants. Revision 1 . IAEA-EBP-WWER-08(1), IAEA Vienna Kang, K.S., Kupča, L. (Eds.) 2010. Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment , Handbook on Deterministic Evaluation for the Integrity of Reactor Pressure Vessel , IAEA TECDOC-1627, IAEA Vienna Katona, T.J., Biró, Á., Rátkai, S. 2023. Feasibility of Safe Operation of WWER-440-Type Nuclear Power Plants for Up to 60–70 Years, Energies 16 4170. https://doi.org/10.3390/en16104170 Maugin, G.A., 2010. Configurational Forces. Thermomechanics, Physics, Mathamatics and Numerics. In: CRC Series: Modern Mechanics and Mathematics. CRC Press Taylor&Francis Group Boca Raton, London, New York Morro, A., Giorgi, C., 2023. Mathematical Modelling of Continuum Physics . In: Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Cham https://doi.org/10.1007/978-3-031-20814-0 MRKR – SHR – 2004, 2004. Methodology for the Calculation of Brittle Fracture Resistance for Operating VVER Reactor Pressure Vessels , Rosenergoatom, Moscow (In Russian) Muschik, W., Papenfuß, C., Ehrentraut, H., 2001. A sketch of continuum thermodynamics, Journal of Non-Newtonian Fluid Mechanics , 96 1–2 255–290. https://doi.org/10.1016/S0377-0257(00)00141-5 Öttinger, H.C., 2017. A philosophical approach to quantum field theory . Cambridge University Press Cambridge New York Podio-Guidugli, P., 2019. Continuum Thermodynamics . SISSA Springer Series Volume 1, Springer Nature Switzerland AG https://doi.org/10.1007/ 978-3-030-11157-1 Rios, J., Bolander, N., 2023. Physics in a Digital Twin World. In: Crespi, N., Drobot, A.T., Minerva, R. (Eds.) The Digital Twin . Springer, Cham 577–598. https://doi.org/10.1007/978-3-031-21343-4_21 Steinmann, P., 2022. Spatial and Material Forces in Nonlinear Continuum Mechanics. A Dissipation-Consistent Approach . In: Solid Mechanics and its Applications 272, Springer Nature Cham https://doi.org/10.1007/978-3-030-89070-4 Torromé, R.G. 2021. General theory of non-reversible local dynamics, International Journal of Geometric Methods in Modern Physics 18 7 2150111 https://doi.org/10.1142/S0219887821501115 VERLIFE, 2008. Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs , VERLIFE – Version 2008, COVERS Project Report, European Commission Bruxelles Zheng, P., Chen, R., Liu, H., Chen, J., Zhang, Z., Liu, X., Shen, Y., 2020. On the standards and practices for miniaturized tensile test – A review, Fusion Engineering and Design 161 112006 https://doi.org/10.1016/j.fusengdes.2020.112006

Made with FlippingBook - Online Brochure Maker