PSI - Issue 68
Roman Kushnir et al. / Procedia Structural Integrity 68 (2025) 32–38 R. Kushnir et al. / Structural Integrity Procedia 00 (2025) 000–000
36
5
!
(
)
( ) ( ) ! $% ! !
" ! = ! ! ! ! # " $
$ ! !
"
,
(23)
#
=
"
!"
!"
#
%
!
!
! ! ! !
! ! ! !
where is a unit vector collinear with !
; and is a unit vector normal to
.
4. Boundary integral relations According to Pasternak et al. (2016) the following extended Green’s second identity can be constructed for differentiable functions and and a symmetric 2nd order tensor ( ) ! !
! !
!" "! # # =
!" #
(
)
(
)
%%
%%%
! !" " ! " " ! $ #
! !" " ! # $ %&
! !" !" ! " " ! $ ! !" !" # #
%'
=
.
(24)
#
B
B
!"#$ % !
The same can be derived for
differentiable vector-functions
and
and symmetric 4th order tensor
! !
! !
! !
( ) !"#$ #$!" % % = ! ! ( % %% !
:
)
(
)
% !
% !
% !
%%%
(25)
"
! ! !"#$ #$ ! !"#$ #$ " ! " " ! $ ! C '(
')
=
! ! !"#$ # "$ ! !"#$ # "$ ! " " ! $ !
#
B
B
Here
is a boundary of the 3D domain
and
is a unit outward normal to the surface
.
! "
! B
! B
B
! !
Substituting
and
instead of
and
in Eq. (24) and accounting for Eqs. (2), (9) one obtains the heat
!
!
!
conduction integral formulae
(
) ( ) !
( ) " !
(
) ( ) ( ) ( ! " ! $ ! ! ! ! ! ! #
)
( ) ( ) ( ) & $' ! ! ! ! #
%%
$ # %%%
!
!
# # $%
!
=
#
,
(26)
"
"
"
!
"
"
B
B
(
)
( ) ( ! " ! ! ! #
)
where
.
# ! !
!
#
!" ! $ % = ! ! ! " ! = !
"
#
"
"
(
) ! "
Assuming that
,
in Eq. (25) and accounting for Eqs. (3), (8), and (20) one obtains
! "! # ! = ! !
(
) ( ) " ! ! ! ! ! ) ( ) ! " $ ()
( ) ! !
(
) ( ) " ! ! ! ! !
(
# %% %%% B
" % &
$ !
'
=
$
!
!"
!"
(27)
(
) ( ) ( ) * (+ ! ! ! ! ! "
( ) !
(
) ( ) " (+ !
"# ! " %%% !
" ! !
%
%
+
+
!
" !" #
!
!"
"
B
B
(
)
( )
(
)
!
where . The last integral in Eq. (27) can be converted to a surface integral as follows. According to Eqs. (13)–(15) the following dependence holds, ! !" " # $ ! = ! ! " ! " " !" "#$% # !$ % C ' ( ) = ! ! ! ! ! and
(
)
(
)
!
.
(28)
! ' ! = ! !
! ! !
% &
! !" # !"
"
! $% #$ %
"
( ) ! " ! " ! = ! !
( ) ! " = !
Accounting for Eq. (2) and assuming that
,
in Eq. (24) one can write that
( ) !
(
) ( ) (' !
(((
! ! !
& '
!
! !" # !"
"
!
(29)
(
) ( ) !
(
) ( ) $ ! ! ! " !
( ) !
(
) ( ) ( ) ! + (' ! ! ! ! !
((
(((
! ! ! !
)
'
% (* %
'
=
+
#
$ &
'
"
"
#
#
#
%
!
!
"
(
) = ! ! ! "
(
) ( ) " ' ! ! ! ! "
where
.
$
% &
" "# ! #
!
Made with FlippingBook - Online Brochure Maker