PSI - Issue 68

Ritsuki Morohoshi et al. / Procedia Structural Integrity 68 (2025) 701–707

707

7

R. Morohoshi et al. / Structural Integrity Procedia 00 (2024) 000–000

(c) shear Fig. 9: All Schimd factore of right before transformation to ′ (d) shear ratio

(a) notch

(b) notch ratio

(e) uniaxial

(f) uniaxial ratio

(a) notch (f) uniaxial ratio Fig. 10: All test results of initial grain size and the amount of newly-made ′ throughout the tensile test. bigger grain is easy to be martensite in most cases. However, middle grain size is the most easily to be martensite only in the shear test. That could be the causes of stress field dependency. 4. Conclusion (1) In-situ SEM-EBSD experiment also shows the stress field dependency on ′ transformation, but further study is desired. (2) The Schmid factor does not explain the stress field dependency of martensitic stability. (3) Grain size could influence the martensitic stability differently to the different stress field. References Beese, A.M., Mohr, D., 2011. Effect of stress triaxiality and lode angle on the kinetics of strain-induced austenite-to martensite transformation. Acta Materialia 59, 2589–2600. URL: https://www.sciencedirect.com/science/article/pii/ S1359645410008724 , doi: https://doi.org/10.1016/j.actamat.2010.12.040 . Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 241, 376–396. URL: http://www.jstor.org/ stable/100095 . Lebedev, A., Kosarchuk, V., 2000. Influence of phase transformations on the mechanical properties of austenitic stainless steels. International Journal of Plasticity 16, 749–767. URL: https://www.sciencedirect.com/science/article/pii/ S0749641999000856 , doi: https://doi.org/10.1016/S0749-6419(99)00085-6 . de Melo Freire, R.M., Uranaka, S., Kimura, M., Kawabata, T., 2024. Hydrogen embrittlement of saw and smaw welded joints from the sus316l at low temperatures, in: International Ocean and Polar Engineering Conference, pp. ISOPE–I–24–616. arXiv:https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE24/All-ISOPE24/ISOPE-I-24-616/3414839/isope-i-24-616.pdf . Polatidis, E., Haidemenopoulos, G., Krizan, D., Aravas, N., Panzner, T., Šmíd, M., Papadioti, I., Casati, N., Van Petegem, S., Van Swygenhoven, H., 2021. The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: Experimental investigation and modelling the transformation kinetics. Materials Science and Engineering: A 800, 140321. URL: https://www.sciencedirect.com/science/article/pii/S092150932031385X , doi: https://doi.org/ 10.1016/j.msea.2020.140321 . Tomoya, K., 2023. Material Reliable Evaluation Program for a Large Capacity Liquefied Storage Tank in Japan, pp. ISOPE–I– 23–492. arXiv:https://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE23/All-ISOPE23/ISOPE-I-23-492/3164427/isope-i-23-49 Uranaka, S., Tsuda, R., Morohoshi, R., Okita, T., Tochigi, E., Kawabata, T., under review. Change in microstructure with strain at cryogenic temperature in type 316l austenitic stainless steel. Materials Science and Engineering: A . Zhang, X.W., Wen, J.F., Zhang, X.C., Wang, X.G., Tu, S.T., 2019. Fatigue & Fracture of Engineering Materials & Struc tures 42, 2079–2092. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/ffe.13084 , doi: https://doi.org/10. 1111/ffe.13084 , arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/ffe.13084 . (b) notch ratio (c) shear (d) shear ratio (e) uniaxial

Made with FlippingBook - Online Brochure Maker