PSI - Issue 68
Marcell Gáspár et al. / Procedia Structural Integrity 68 (2025) 500–505 M. Gáspár et al. / Structural Integrity Procedia 00 (2025) 000–000
503
4
!"" !#" !!" !A" !B" !C" !'" !E" !)" !G" A""
c74>@??75 >Pd@>e>VIP45S788VPggB45@SCV?BV hiVOMNV#C'#B0#EVA)"V-;#"
ZP87V>P?74@PA PS5VB4@C@SPAVa7A5EV!AAV-;#"
!"#$%&%$%' !"#$%&%($%' !"#$%&%)*%' ? )lC mVCV8 ? )lC mV#CV8 ? )lC mVA"V8
-P45S788VW-;#"<
HI-./0N
OH-./0N
Fig. 3. Hardness test results on the studied samples.
Fig. 4. Absorbed impact toughness energy in the studied samples.
Fig. 5 shows an overview of the fracture surfaces in tested samples. In unaffected weld metal ductile fracture is prevalent. A little brittle fracture can be observed in CGHAZ-W and the fraction of brittle fracture increases in ICHAZ W. More detailed analysis of fracture surfaces is provided in the part 2 of this study (Tervo et al., 2024) published simultaneously with this paper.
Fig. 5. Overview of the fracture surfaces in tested samples of the original weld metal (a), CGHAZ-W (b) and ICHAZ-W (c).
Made with FlippingBook - Online Brochure Maker