PSI - Issue 68
Renata Latypova et al. / Procedia Structural Integrity 68 (2025) 1115–1120 R. Latypova et al./ Structural Integrity Procedia 00 (2025) 000–000
1120
6
363–378. https://doi.org/10.1016/B978-0-08-096532-1.01212-7 Latypova, R., Nyo, T.T., Kömi, J., Pallaspuro, S., 2023a. Hydrogen embrittlement in as-quenched martensitic steels – application of incremental step loading technique with novel Tuning-fork test. Key Engineering Materials 967, 17–22. https://doi.org/10.4028/p-W6Queh Latypova, R., Nyo, T.T., Seppälä, O., Hahtonen, K., Hänninen, H., Kömi, J., Pallaspuro, S., 2023b. The effect of Pd and Ni coatings on hydrogen permeation experiments of as-quenched martensitic steel. Corrosion Reviews 41, 537–544. https://doi.org/10.1515/corrrev-2022-0118 Liu, Q., Zhou, Q., Venezuela, J., Zhang, M., Wang, J., Atrens, A., 2016. A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction., Corrosion Reviews. https://doi.org/10.1515/corrrev-2015-0083 Makoto, K., Wataru, U., Satoshi, Y., 2021. Improved hydrogen embrittlement resistance of steel by shot peening and subsequent low-temperature annealing. ISIJ International 61, 1159–1169. https://doi.org/10.2355/isijinternational.ISIJINT-2020-463 Malitckii, E., Yagodzinskyy, Y., Vilaҫa, P., 2019. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high strength steels. Materials Science and Engineering: A 760, 68–75. https://doi.org/10.1016/j.msea.2019.05.103 Porter, D.A., Easterling, K.E., Sherif, M.Y., 2014. Phase Transformations in Metals and Alloys, 3rd ed. https://doi.org/10.1128/AAC.03728-14 Sakamoto, Y., Mantani, T., 1976. Effect of Quenching and Tempering on Diffusion of Hydrogen in Carbon Steel. 17, 743–748. Toji, Y., Takagi, S., Hasegawa, K., Seto, K., 2012. Influence of low-temperature heat treatment after deformation on hydrogen entry into steel sheets. ISIJ International 52, 274–280. https://doi.org/10.2355/isijinternational.52.274 Vander Vennet, S., Depover, T., Verbeken, K., 2022. The interaction of hydrogen with retained austenite in automotive steel grades. Procedia Structural Integrity. Elsevier B.V., 813–820. https://doi.org/10.1016/j.prostr.2022.12.103 Venezuela, J., Lim, F.Y., Liu, L., James, S., Zhou, Q., Knibbe, R., Zhang, M., Li, H., Dong, F., Dargusch, M.S., Atrens, A., 2020a. Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel. Corrosion Science 171, 108726. https://doi.org/10.1016/j.corsci.2020.108726 Venezuela, J., Lim, F.Y., Liu, L., James, S., Zhou, Q., Knibbe, R., Zhang, M., Li, H., Dong, F., Dargusch, M.S., Atrens, A., 2020b. Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel. Corrosion Science 171. https://doi.org/10.1016/j.corsci.2020.108726 Venezuela, J., Liu, Q., Zhang, M., Zhou, Q., Atrens, A., 2016. A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corrosion Reviews 34, 153–186. https://doi.org/10.1515/corrrev-2016-0006 Zhang, Y., Hui, W., Zhao, X., Wang, C., Dong, H., 2018. Effects of hot stamping and tempering on hydrogen embrittlement of a low-carbon boron alloyed steel. Materials 10. https://doi.org/10.3390/ma11122507 Declaration of generative AI and AI-assisted technologies in the writing process. During the preparation of this work, the authors used ChatGPT to improve the readability and language of the manuscript. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the published article.
Made with FlippingBook - Online Brochure Maker