PSI - Issue 68

H. Nykyforchyn et al. / Procedia Structural Integrity 68 (2025) 861–867 H. Nykyforchyn et al. / Structural Integrity Procedia 00 (2025) 000–000

867

7

Acknowledgements

This project received funding from the National Research Foundation of Ukraine under a grant agreement on March 01, 2024 (Project No 2022.01/0099). References Alvarez, G., Peral, L. B., Rodriguez, C., Garcia, T. E., Belzunce, F. J., 2019. Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. International Journal of Hydrogen Energy 44, 15634–15643. Alvarez, G., Zafra, A., Belzunce, F. J., Rodriguez, C., 2020. Hydrogen embrittlement analysis in a CrMoV steel by means of SENT specimens. Theoretical and Applied Fracture Mechanics 106, 102450. Andreikiv, O. Y., Dolinska, I. Y., Liubchak, M. O., Nastasiak, S. V., 2023. The influence of operational degradation of material on the residual life of oil pipelines. Materials Science 59, 385–394. Andreikiv, O. Y., Dolinska, I. Y., Zviahin, N. S., Liubchak, M. O., 2024. Determination of the residual life of a plate with a system of cracks under the action of long-term static load and corrosive environment. Materials Science 59, 577–584. ASTM E 813, 1996. Standard Test Method for J-Integral Characterization of Fracture Toughness. Annual Book of ASTM Standards. Vol. 03.01., 713–727 . Dzioba, I., Zvirko, O., Lipiec, S., 2021. Assessment of operational degradation of pipeline steel based on true stress-strain diagrams. Lecture Notes in Civil Engineering 102, 175–187. Hembara, O. V., Syrotyuk, A. M., Soviak, I. M., Sapuzhak, Ya. I., Hembara N. T., Hrynenko M. V., 2023. Analytical estimation of hydrogen concentration in a defective material. Materials Science 59, 426–433. Hredil, M., Tsyrulnyk., O., 2010. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines. 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale (ECF-18), Dresden, Germany, 30.08 – 03.09. 2010, manuskript No.483. Li, H., Niu, R., Li, W., Lu, H., Cairney, J., Chen, Y.-S., 2022. Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation. Journal of Natural Gas Science and Engineering 105, 104709. Li, Q., Ghadiani, H., Jalilvand, V., Alam, T., Farhat, Z., Islam, M. A., 2024. Hydrogen impact: a review on diffusibility, embrittlement mechanisms, and characterization. Materials 17(4), 965. Khoma, M. S., Ivashkiv, V. R., Chuchman, M. R., Ratska, N. B., Vasyliv, Kh. B., 2023. Methodological features of the study of hydrogen permeation through a steel membrane from an acid environment. Materials Science 59, 434–442. Krechkovs’ka, H. V., Tsyrul’nyk, O. T., Student, O. Z., 2019. In-service degradation of mechanical characteristics of pipe steels in gas mains. Strength of Materials 51(3), 406–417. Makarenko, V. D., Stogniy, O. V., Gots, V. I., Maksymov, S. Yu., Makarenko, Yu. V., 2024 . Corrosion degradation of long-term operated steel sewer pipes. Materials Science 59, 532–537. Mandryk, O., Poberezhny, L., Maruschak, P., Poberezhna, L., Maniuk, O., Maniuk, M.. 2022. Assessment of Environmental Risks of the Gas Transportation Process by Main Pipelines. In: Lecture Notes in Intelligent Transportation and Infrastructure , Part F1395, pp. 717–725. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Hredil, M., Krechkovska, H., Tsyrulnyk, O., Student, O., 2022. Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport. Frattura ed Integrità Strutturale 16(59), 396-404. Nykyforchyn, H., Unigovskyi, L., Zvirko, O. Hredil, M., Krechkovska, H., Student, O., Tsyrulnyk, O., 2022. Susceptibility of carbon pipeline steels operated in natural gas distribution network to hydrogen-induced cracking. Procedia Structural Integrity 36, 306–312. Poberezhnyi, L. Y., Marushchak, P. O., Sorochak, A. P., Draganovska, D., Hrytsanchuk, A. V., Mishchuk, B. V., 2017. Corrosive and mechanical degradation of pipelines in acid soils. Strength of Materials 49, 539–549. Sylovanyuk, V. P., Ivantyshyn, N. A., 2024. The influence of inclusions on mechanical characteristics of structural-heterogeneous materials (A review). Materials Science 59, 566–576. Syrotyuk, A. M., Leshchak, R. L., Hrynenko, M. V., Hembara, N. T., 2023 . Evaluation of hydrogen embrittlement risk of long-term operated gas pipelines made of 10G2BT steel. Materials Science 59, 300–305. Toribio, J., Vergara, D., Lorenzo, M., 2016. Influence of loading rate on the hydrogen-assisted micro-damage in bluntly notched samples of pearlitic steel. Metals 6(1), 11. Tsyrul’nyk, O. T., Kryzhanivs’kyi, E. I., Petryna, D. Y., Taraevs’kyi, O. S., Hredil, M. I., 2004. Susceptibility of a welded joint of 17G1S steel in a gas main to hydrogen embrittlement. Materials Science 40, 844–849. Tsyrulnyk, O. T., Student, O. Z., Zvirko, O. I., Demianchuk, D. O., Venhryniuk, O. I., 2024. Assessment of hydrogen embrittlement of operated pipe steel using the J -integral method. Materials Science 59, 694–704. Zvirko 1 , O., Nykyforchyn, H., Krechkovska, H., Tsyrulnyk, O., Hredil, M., Venhryniuk, O., Tsybailo, I., 2024. Evaluating hydrogen embrittlement susceptibility of operated natural gas pipeline steel intended for hydrogen service. Engineering Failure Analysis 163(A), 108472. Zvirko 2 , O.I., Hredil, M.I., Tsyrulnyk, O.T., Venhryniuk, O. I., Nykyforchyn, H. M., 2024. Method of assessing the influence of gaseous hydrogen on corrosion and hydrogenation of steels. Materials Science 59, 524–531. Zvirko, O. I., 2021. In-service degradation of structural steels (a survey). Materials Science 57(3), 319–330.

Made with FlippingBook - Online Brochure Maker