PSI - Issue 68

Eduard Navalles et al. / Procedia Structural Integrity 68 (2025) 1105–1114 Eduard Navalles et al. / Structural Integrity Procedia 00 (2025) 000–000

1114 10

References

Aleksić, V., Bulatović, S., Zečević, B., Maksimović, A., & Milović, L. (2022). PROCESSING OF DATA OBTAINED BY THE TESTING OF STEEL UNDER LOW CYCLIC FATIGUE (PART I). Transactions of Famena , 46 (4). https://doi.org/10.21278/TOF.464041622 ASTM G142-98 (2022). (2022). Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure, High Temperature, or Both. ASTM Book of Standards , 03.02 (Reapproved). https://doi.org/10.1520/G0142 98R22 Cheng, A., & Chen, N. Z. (2017). Fatigue crack growth modelling for pipeline carbon steels under gaseous hydrogen conditions. International Journal of Fatigue , 96 . https://doi.org/10.1016/j.ijfatigue.2016.11.029 Corbett, K. T., Bowen, R. R., & Petersen, C. W. (2004). High-strength steel pipeline economics. International Journal of Offshore and Polar Engineering , 14 (1). Dey, R., Tarafder, S., & Sivaprasad, S. (2018). Influence of axial and torsional cyclic loading on the fatigue behavior of 304LN stainless steel using solid and hollow specimens. Mechanics of Materials , 122 . https://doi.org/10.1016/j.mechmat.2018.03.012 Han, Y. D., Wang, R. Z., Wang, H., & Xu, L. Y. (2019). Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain. International Journal of Hydrogen Energy , 44 (39). https://doi.org/10.1016/j.ijhydene.2019.06.054 Hardie, D., Charles, E. A., & Lopez, A. H. (2006). Hydrogen embrittlement of high strength pipeline steels. Corrosion Science , 48 , 4378–4385. https://doi.org/10.1016/j.corsci.2006.02.011 H.K.D.H. Bhadeshia. (2015). Bainite in Steels: Theory and Practice (3rd Edition). CRC Press. Konert, F., Campari, A., Nietzke, J., Sobol, O., Paltrinieri, N., & Alvaro, A. (2024). Evaluation of the tensile properties of X65 pipeline steel in compressed gaseous hydrogen using hollow specimens. Procedia Structural Integrity , 54 . https://doi.org/10.1016/j.prostr.2024.01.074 Konert, F., Wieder, F., Nietzke, J., Meinel, D., Böllinghaus, T., & Sobol, O. (2024). Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT. International Journal of Hydrogen Energy , 59 . https://doi.org/10.1016/j.ijhydene.2024.02.005 Lee, J. A. (2016). Hydrogen Embrittlement. NASA/TM-2016–218602. Shreir’s Corrosion , April . Li, Z. H., Sasaki, T. T., Ueji, R., Kimura, Y., Shibata, A., Ohkubo, T., & Hono, K. (2024). Role of deformation on the hydrogen trapping in the pearlitic steel. Scripta Materialia , 241 . https://doi.org/10.1016/j.scriptamat.2023.115859 Liu, P. Y., Zhang, B., Niu, R., Lu, S. L., Huang, C., Wang, M., Tian, F., Mao, Y., Li, T., Burr, P. A., Lu, H., Guo, A., Yen, H. W., Cairney, J. M., Chen, H., & Chen, Y. S. (2024). Engineering metal-carbide hydrogen traps in steels. Nature Communications , 15 (1). https://doi.org/10.1038/s41467-024-45017-4 Mohtadi-Bonab, M. A. (2022). Effect of different parameters on hydrogen affected fatigue failure in pipeline steels. In Engineering Failure Analysis (Vol. 137). https://doi.org/10.1016/j.engfailanal.2022.106262 Ohaeri, E., Eduok, U., & Szpunar, J. (2018). Hydrogen related degradation in pipeline steel: A review. In International Journal of Hydrogen Energy (Vol. 43, Issue 31). https://doi.org/10.1016/j.ijhydene.2018.06.064 Oliveira, D. M., San Marchi, C. W., Medlin, D. L., & Gibeling, J. C. (2022). The influence of hydrogen on the low cycle fatigue behavior of strain hardened 316L stainless steel. Materials Science and Engineering: A , 849 . https://doi.org/10.1016/j.msea.2022.143477 Ryu, J. H., Chun, Y. S., Lee, C. S., Bhadeshia, H. K. D. H., & Suh, D. W. (2012). Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Materialia , 60 (10). https://doi.org/10.1016/j.actamat.2012.04.010 Slifka, A. J., Drexler, E. S., Amaro, R. L., Hayden, L. E., Stalheim, D. G., Lauria, D. S., & Hrabe, N. W. (2018). Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen. Journal of Pressure Vessel Technology, Transactions of the ASME , 140 (1). https://doi.org/10.1115/1.4038594 Slifka, A. J., Drexler, E. S., Nanninga, N. E., Levy, Y. S., McColskey, J. D., Amaro, R. L., & Stevenson, A. E. (2014). Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment. Corrosion Science , 78 . https://doi.org/10.1016/j.corsci.2013.10.014 Tsuchida, Y., Watanabe, T., Kato, T., & Seto, T. (2010). Effect of hydrogen absorption on strain-induced low-cycle fatigue of low carbon steel. Procedia Engineering , 2 (1). https://doi.org/10.1016/j.proeng.2010.03.060 Ueno, A., & Benjamin, G. (2019). Effect of high-pressure H2 gas on tensile and fatigue properties of stainless steel SUS316L by means of the internal high-pressure H2 gas method. Procedia Structural Integrity , 19 . https://doi.org/10.1016/j.prostr.2019.12.053 Verbeken, K. (2012). Analysing hydrogen in metals: Bulk thermal desorption spectroscopy (TDS) methods. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments . https://doi.org/10.1533/9780857095374.1.27 Wang, C., Zhang, J., Liu, C., Hu, Q., Zhang, R., Xu, X., Yang, H., Ning, Y., & Li, Y. (2023). Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests. International Journal of Hydrogen Energy , 48 (1). https://doi.org/10.1016/j.ijhydene.2022.09.228 Wu, X., Zhang, H., Yang, M., Jia, W., Qiu, Y., & Lan, L. (2022). From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: Mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels. In International Journal of Hydrogen Energy (Vol. 47, Issue 12). https://doi.org/10.1016/j.ijhydene.2021.12.108 Yamabe, J., Yoshikawa, M., Matsunaga, H., & Matsuoka, S. (2016). Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen. Procedia Structural Integrity , 2 . https://doi.org/10.1016/j.prostr.2016.06.068 Yu, H., Díaz, A., Lu, X., Sun, B., Ding, Y., Koyama, M., He, J., Zhou, X., Oudriss, A., Feaugas, X., & Zhang, Z. (2024). Hydrogen Embrittlement as a Conspicuous Material Challenge─Comprehensive Review and Future Directions. Chemical Reviews , 124 (10), 6271–6392. https://doi.org/10.1021/acs.chemrev.3c00624 Zhang, Y. H. (2010). Review of the effect of hydrogen gas on fatigue performance of steels. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE , 6 . https://doi.org/10.1115/OMAE2010-20622 Zhao, Z., Liu, M., Zhou, Q., & Li, M. (2022). Hydrogen permeation behavior of QP1180 high strength steel in simulated coastal atmosphere. Journal of Materials Research and Technology , 18 . https://doi.org/10.1016/j.jmrt.2022.03.147

Made with FlippingBook - Online Brochure Maker