PSI - Issue 68
533 7
Martin Nesládek et al. / Procedia Structural Integrity 68 (2025) 527–533 Martin Nesládek et al. / Structural Integrity Procedia 00 (2025) 000–000
b
a
Fig. 8. Evaluation of corrected SH data by using (a) Matušů and (b) Luong’s methods.
Acknowledgements The authors would like to acknowledge the support from the Czech Science Foundation within the 23-06130K project. Financial support from CELSA Research Fund, grant No. 23/026, is gratefully acknowledged. References ASTM E739-10, 2010. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data. Fargione, G., 2002. Rapid determination of the fatigue curve by the thermographic method. Int J Fatigue 24, 11–19. Huang, J., Pastor, M.-L., Garnier, C., Gong, X., 2017. Rapid evaluation of fatigue limit on thermographic data analysis. Int J Fatigue 104, 293– 301. La Rosa, G., 2000. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int J Fatigue 22, 65–73. Lipski, A., 2016. Rapid Determination of the S - N Curve for Steel by means of the Thermographic Method. Advances in Materials Science and Engineering 2016, 1–8. Luong, M.P., 1998. Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials 28, 155–163. Matušů, M., Dimke, K., Šimota, J., Papuga, J., Rosenthal, J., Mára, V., Beránek, L., 2023. Energy-based method for analyzing fatigue properties of additively manufactured AlSi10Mg. Journal of Mechanical Science and Technology 37, 1131–1137. Matušů, M., Džuberová, L., Papuga, J., Rosenthal, J., Šimota, J., Beránek, L., 2024. Fatigue analysis and heat treatment comparison of additively manufactured specimens from AlSi10Mg alloy. Int J Fatigue 185, 108357. Meneghetti, G., 2007. Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int J Fatigue 29, 81–94. Nesládek, M., Marques, J.M.E., Papuga, J., Fojtík, F., Mára, V., Trojan, K., Doubrava, K., 2024. Fretting fatigue of 42CrMo4+QT steel: Experimental and numerical assessment. Int J Fatigue 189, 108575. Papuga, J., Mžourek, M., Matušů, M., Mára, V., Čapek, J., 2023. Investigation of the size effect on 42CrMo4 + QT steel in the high-cycle fatigue domain part I: Experimental campaign. Int J Fatigue 175, 107743. Torabian, N., Favier, V., Ziaei-Rad, S., Dirrenberger, J., Adamski, F., Ranc, N., 2017. Calorimetric Studies and Self-Heating Measurements for a Dual-Phase Steel Under Ultrasonic Fatigue Loading. In: Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, pp. 81–93. Zaeimi, M., De Finis, R., Palumbo, D., Galietti, U., 2024. Fatigue limit estimation of metals based on the thermographic methods: A comprehensive review. Fatigue Fract Eng Mater Struct 47, 611–646.
Made with FlippingBook - Online Brochure Maker