PSI - Issue 68
Olha Zvirko et al. / Procedia Structural Integrity 68 (2025) 868–873 Olha Zvirko / Structural Integrity Procedia 00 (2025) 000–000
873
6
Acknowledgements
The research was financially supported by the National Research Foundation of Ukraine under Project No 2022.01/0099.
References
Alvaro, A., Wan, D., Olden, V., Barnoush, A., 2019. Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel. Engineering Fracture Mechanics 219(1). 106641. Boukortt, H., Amara, M., Hadj Meliani, M., Bouledroua, O., Muthanna, B.G.N., Suleiman, R.K., Sorour, A.A., Pluvinage, G., 2018. Hydrogen embrittlement effect on the structural integrity of API 5L X52 steel pipeline. International Journal of Hydrogen Energy 43(42), 19615–19624. Cao, J., 2024. Effect of hydrogen embrittlement on the safety assessment of low-strength hydrogen transmission pipeline. Engineering Failure Analysis 156, 107787. Dadfarnia, M., Sofronis, P., Brouwer, J., Sosa, S., 2019. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen. International Journal of Hydrogen Energy 44(21), 10808–10822. Depover, T., Pérez Escobar, D., Wallaert, E., Zermout, Z., Verbeken, K., 2014. Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy 39(9), 4647–4656. Haeseldonckx, D., D’haeseleer, W., 2007. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy 32(10–11), 1381–1386. Hoschke, J., Chowdhury, M. F. W., Venezuela, J., Atrens, A., 2023. A review of hydrogen embrittlement in gas transmission pipeline steels, Corrosion Reviews 41(3), 277–317. Hrabovskyy, R., Kryzhanivskyy, Y., Tuts, O., Mandruk, O., Tyrlych, V., Artym, V., Sapuzhak, Y., 2024. Impact of long-term operation on reliability and durability of natural gas pipeline: potential environmental consequences of accidents. Procedia Structural Integrity 59, 112–119. Hredil, M., Tsyrulnyk, O., 2010. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines. 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale (ECF-18), manuskript No. 483. Kappes, M. A., Perez, T., 2023. Hydrogen blending in existing natural gas transmission pipelines: a review of hydrogen embrittlement, governing codes, and life prediction methods. Corrosion Reviews 41(3), 319–347. Maruschak, P., Bishchak, R., Prentkovskis, O., Poberezhnyi, L., Danyliuk, I., Garbinčius, G., 2016. Peculiarities of the static and dynamic failure mechanism of long-term exploited gas pipeline steel. Advances in Mechanical Engineering 8(4). Mohtadi-Bonab, M.A., Eskandari, M., 2017. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel. Engineering Failure Analysis 79, 351e60. Mohtadi-Bonab, M., Masoumi, J., Szpunar, A., 2021. A comparative fracture analysis on as-received and electrochemically hydrogen charged API X60 and API X60SS pipeline steels subjected to tensile testing, Engineering Failure Analysis 129, 105721. Nnoka, M., Alaso Jack, T., Szpunar, J., 2024. Effects of different microstructural parameters on the corrosion and cracking resistance of pipeline steels: A review. Engineering Failure Analysis 159, 108065. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Tsyrulnyk, O., Krechkovska, H., 2021. Pipeline durability and integrity issues at hydrogen transport via natural gas distribution network. Procedia Structural Integrity 33, 646–651. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Hredil, M., Krechkovska, H., Student, O., Tsyrulnyk, O., 2022. Susceptibility of carbon pipeline steels operated in natural gas distribution network to hydrogen-induced cracking. Procedia Structural Integrity 36, 306–312. Nykyforchyn, H., Zvirko, O., Oliynyk, O., Venhryniuk, O., Nesterov, O., Tsyrulnyk, O., 2023. In-service degradation of rolled carbon steels: the role of damaging. Procedia Structural Integrity 47, 190–194. Nykyforchyn, H., Tsyrulnyk, O., Venhryniuk, O., Zvirko, O., Student, O., Dzioba, I., Demianchuk, D., 2024. Hydrogen role in strain aging of low alloy steels under operation. Procedia Structural Integrity 59, 82–89. Pluvinage, G., Toth, L., Capelle, J., 2021. Effects of hydrogen addition on design, maintenance and surveillance of gas networks. Processes 9(7), 1219. Poberezhnyi, L., Poberezhna, L., Popovych, P., 2024. Operational risks when transporting gas and gas-hydrogen mixtures through existing gas pipelines. Lecture Notes in Intelligent Transportation and Infrastructure. Part F2296, 307–316. Shirazi, H., Eadie, R., Chen, W., 2023. A review on current understanding of pipeline circumferential stress corrosion cracking in near-neutral pH environment. Engineering Failure Analysis 148, 107215. Tsyrulnyk, O.T., Student, O.Z., Zvirko, O.I., Demianchuk, D.O., Venhryniuk, O.I., 2024. Assessment of hydrogen embrittlement of operated pipe steel using the J -integral method. Materials Science 59(6), 694–701. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y., 2015. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Materials Science 50(5), 44–47. Zhu, X.-K., 2015. State-of-the-art review of fracture control technology for modern and vintage gas transmission pipelines. Engineering Fracture Mechanics 148, 260–280. Zvirko, O.I., 2021. In-Service degradation of structural steels (A survey). Materials Science 57(3), 319–330. Zvirko, O.I., Lipec, S., Vengreniuk, O.I., Dzioba, I., 2023. Evaluation of the stress-strain state at the crack tip in casing pipes based on numerical simulation. Materials Science, 58 (4), 460–465. Zvirko, O., Nykyforchyn, H., Krechkovska, H., Tsyrulnyk, O., Hredil, M., Venhryniuk, O., Tsybailo, I., 2024. Evaluating hydrogen embrittlement susceptibility of operated natural gas pipeline steel intended for hydrogen service. Engineering Failure Analysis 163(A), art. no. 108472.
Made with FlippingBook - Online Brochure Maker