PSI - Issue 68
Halyna Krechkovska et al. / Procedia Structural Integrity 68 (2025) 762–768 Halyna Krechkovska et al. / Structural Integrity Procedia 00 (2025) 000–000
768
7
References
Armaki, H. G., Chen, R., Kano, S., Maruyama, K., Hasegawa, Y., Igarashi, M., 2011. Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement. J. Nuclear Mat 416, 3, 273–279. Babii, L.O., Zagórski, A., Student, O.Z. 2011. Change of a substructure of a hull plate steel owing to degradation in operating conditions. Metallofizika I Noveishie Tekhnologii 33, spec. iss. 407–417. Babii, L.O., Student, O.Z., Zagórski, A., Markov, A. D. 2007. Creep of degraded 2.25 Cr-Mo steel in hydrogen. Materials Science 43, 5. 701–707. Chen, R.P., Ghassemi-Armaki, H., Maruyama, K., Igarashi, M. 2011. Long-term microstructural degradation and creep strength in Gr.91 steel. Mat. Sci. and Eng. A 528, 13.4390-4394. Dobrzanski, J., Zielinski, A., Krtzon, H., 2007. Mechanical properties and structure of the Cr-Mo-V low-alloyed steel after long-term service in creep condition. J. of Achievements in Mat. and Manufacturing Eng. 23, 1. 39–42. 1 Dzioba, I., Gajewski, M., Neimitz, A., 2010. Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructure. Int. J. Pressure Vessel and Piping 87, 10. 575–586. 2 Dzioba, I. R., 2010. Properties of 13KhMF steel after operation and degradation under the laboratory conditions. Materials Science 2010. 46, 3. 357–364. Hutsaylyuk, V., Student, O., Maruschak, P., Krechkovska, H., Zvirko, O., Svirska, L., Tsybailo, I., 2023. Analysis of mechanical properties of welded joint metal from TPP steam piping after its operational degradation and hydrogenation. Materials 16, 24. 7520. Hodžić, D., Hajro, I., Tasić, P., 2014. Regenerative heat treatment of heat resistant steel 14MoV6-3, Proceedings of 18th International research/expert conference on trends in the development of machinery and associated technology: TMT 2014, Budapest, Hungary. 95–98. Hodžić, I. Hajro, P. Tasić D., 2016. Impact toughness of regenerative heat-treated steel 14MoV6-3, 20th Int. Research/Expert Conf. Trends in the development of machinery and associated technology TMT 2016, Mediterranean Sea Cruising. 77–80. Krechkovs’ka, G. V., 2008. Structural changes in the exploitation of steam power plant pipeline 15Kh1M1F-type steel concerning with shut downs of power units. Metallofizika i Noveishie Tekhnologii 30, spec. iss. 701–711. Krechkovska, H., Student, O., Zvirko, O., Hredil, M., Svirska, L., Tsybailo, I., Solovei, P., 2023. Substantiation of the critical structural and mechanical state of low-alloy heat-resistant steel from steam pipelines of thermal power plant. Eng. Failure Analysis 50. 107359. Krechkovska, H. V., 2021. Structural-fractographic features of structural steels after long-term operation. Materials Science 57, 2. 228–233. Krechkovska, H., Student, O., Hredil, M., Tsybailo, I., Holovchuk, M., Shtoyko, I., 2022. Visualization of fractographic signs of operational degradation of heat-resistant steel for estimating its actual structure-mechanical state. Procedia Structural Integrity 42. 1398–1405. Kvapilová, M., Ohanková, M., Král P., Dvořák J., Kuchařová K., Čmakal J., Sklenička V., 2022. Characterization of creep properties and the microstructure of a service-exposed low alloy CrMoV steel steam pipe. Materials Science and Engineering: A 853. 143684. Maruyama, K., Chen, R.P., Yaguchi, M., Yoshimi, K. A., 2023. Simulation of softening during creep exposure of grade 91 steel in a time range over 100,000 h around 600°C. Int. J. Pressure Vessels and Piping 202. 104923. Ostash, O. P., Kondyr, A. I., Vol’demarov, O. V., Hladysh, P. V., Kurechko, M. V. 2009. Structural microdamageability of steels of the steam pipelines of thermal power plants. Materials Science 45, 3. 340–349. Négyesi, M., Kraus, M., Mareš, V., Kwon, D., Strnadel, B., 2023. Creep-damaged microstructure and mechanical properties of Cr–Mo–V steel subjected to long-term service exposures. Int. J. Pressure Vessels and Piping 206. 105085. Romaniv, O.M., Nykyforchyn, H.M., Dzyuba, I.R., Student, O.Z., Lonyuk, B.P., 1999. Effect of damage in service of 12Kh1MF steam-pipe steel on its crack resistance characteristics. Materials Science 35, 4. 499–508. Sawada, K., Kushima, H., Tabuchi, M., Kimura, K. 2011. Microstructural degradation of Gr.91 steel during creep under low stress. Material Science and Engineering A 528,16. 5511–5518. Student, O.Z., 1998. Accelerated method for hydrogen degradation of structural steel. Material Science 34, 4. 497–507. Student, O.Z., Dudziński, W., Nykyforchyn, H.M., Kamińska, A. 1999. Effect of high-temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth. Materials Science 35, 4. 499–508. Student, O.Z., Krechkovska, H.V., Svirska, L.М., Kindratskyi, B. I., Shyrokov, V.V., 2021. Ranking of the mechanical characteristics of steels of steam pipelines of thermal power plants by their sensitivity to in-service degradation. Materials Science 57, 3. 404–412. Student, О. Z., Krechkovs’ka, H. V., Palashchuk, T. E., Hladkyi Y. М., 2018. Influence of the long-term operation of 12Kh1МF steel of the bends of main steam pipelines of thermal power plants on its mechanical properties. Materials Science 53, 4. 460–467. Student, О. Z., Krechkovska, H. V., Svirska, L. М., Solovei, P. R., 2021. Restoration of the properties of heat-resistant steel after long-term operation in a steam turbine Materials Science 57, 1. 71–79. Tsybailo, I. O., 2023. Substantiation of modes of restorative heat treatment of heat-resistant steel of TPP steam pipeline bend. Physicochemical mechanics of materials 2023. 60, 2. 103–107. Tsybailo, I. O., Krechkovska, H. V. 2023. The structural-mechanical state of 12Kh1МF steel of TPP pipeline bend after long-term operation. Materials Science 59, 3. 320–327.
Made with FlippingBook - Online Brochure Maker