Issue 68
A. Aabid et alii, Frattura ed Integrità Strutturale, 68 (2024) 310-324; DOI: 10.3221/IGF-ESIS.68.21
Machine Learning Technique
Parameters
Hyperparameters: 'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'normalize': False, 'positive': False Attributes: Coefficients: [[-7.17938824e-03 -1.41997647e-01 -4.48094118e-03 1.34583529e-03 -1.70000000e+00 -1.50833333e-02]] Intercept: [0.53385553 Hyperparameters: 'alpha': 0.1, 'copy_X': True, 'fit_intercept': True, 'max_iter': 1000, 'normalize': False, 'positive': False, 'precompute': False, 'random_state':None, 'selection': 'cyclic', 'tol': 0.0001, 'warm_start': False Attributes: Coefficients: [-0.00978855] Intercept: [0.40325331] Hyperparameters: 'alpha': 0.5, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'normalize': False, 'random_state':None, 'solver': 'auto', 'tol': 0.001 Hyperparameters: 'alpha': 0.2, 'copy_X': True, 'fit_intercept': True, 'l1_ratio': 0.5, 'max_iter': 1000, 'normalize': False, 'positive': False, 'precompute': False, 'random_state':None, 'selection': 'cyclic', 'tol': 0.0001, 'warm_start': False Attributes: Coefficients: [-0.00973463] Intercept: [0.40275909] Hyperparameters: 'C': 5, 'cache_size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'linear', 'max_iter': -1, 'shrinking': True, 'tol': 0.001, 'verbose': False Hyperparameters: 'C': 5, 'cache_size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'poly', 'max_iter': -1, 'shrinking': True, 'tol': 0.001, 'verbose': False Hyperparameters: 'C': 5, 'cache_size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'rbf', 'max_iter': -1, 'shrinking': True, 'tol': 0.001, 'verbose': False Hyperparameters: 'C': 5, ‘cache_size': 200, 'coef0': 0.0, 'degree': 3, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'sigmoid', 'max_iter': -1, 'shrinking': True, 'tol': 0.001, 'verbose': False Hyperparameters: algorithm': 'brute', 'leaf_size': 30, 'metric': 'minkowski', 'metric_params': None, 'n_jobs': None, 'n_neighbors': 3, 'p': 2, 'weights': 'uniform' Hyperparameters: 'ccp_alpha': 0.0, ‘criterion': 'mse', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'random_state': None, 'splitter': 'best'
OLS
Lasso
Ridge
Elastic Net
SVRLIN
SVRPOLY
SVRRBF
SVRSIGM
kNN
DT
Table 4: Hyperparameters and attributes of various ML models.
317
Made with FlippingBook Digital Publishing Software