Issue 68

B. Spisák et alii, Frattura ed Integrità Strutturale, 68 (2024) 296-309; DOI: 10.3221/IGF-ESIS.68.20

[6] Pineau, A. (1992). Global and local approaches of fracture - transferability of laboratory test results to components. In Topics in Fracture and Fatigue, pp. 197-234. DOI: 10.1007/978-1-4612-2934-6_6. [7] Lindqvist, S., Dahl, A., Smith, M., Blouin, A., Dillström, P., Nicak, T., Forsström, A. (2022) Final project report - ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe Long Term Operation): D6.9-21. (V2 ed.) ATLAS+ project [8] Blouin, A., Marie, S., Remmal, A.M. (2019) ATLAS+ European Project: Prediction of Large Ductile Tearing in Piping Using Local Approach. Proceedings of the Volume 6A: Materials and Fabrication. San Antonio, Texas, USA. July 14– 19, 2019. V06AT06A047. ASME. DOI: 10.1115/PVP2019-93586 [9] Achouri, M., Germain, G., Santo, P. D., Saidane, D. (2013). Experimental characterization and numerical modeling of micromechanical damage under different stress states. Materials & Design, 50, pp. 207–222. DOI: 10.1016/j.matdes.2013.02.075. [10] Yan, R., Xin, H., Veljkovic, M. (2019). Identification of GTN damage parameters as a surrogate model for S355. In Proceedings of the 17th International Symposium on Tubular Structures (ISTS17). Research Publishing Services. DOI: 10.3850/978-981-11-0745-0_066-cd. [11] Bézi, Z., Spisák, B., Erdei, R., Szávai, Sz. (2023). Simulation of crack propagation using a GTN ductile damage model based on the virtual crack closure technique, Procedia Structural Integrity, 47(3), pp. 646-653. DOI: 10.1016/j.prostr.2023.07.057. [12] Bézi, Z., Spisák, B., Erdei, R., Szávai, Sz. (2023). Modification of VCCT method with implementation of GTN model for the determination of J-integral, Procedia Structural Integrity 48(10), pp. 326-333. DOI: 10.1016/j.prostr.2023.07.125 [13] ASTM E1820-20 (2020). Standard Test Method for Measurement of Fracture Toughness.

309

Made with FlippingBook Digital Publishing Software