PSI - Issue 67
Daniel A. Triana-Camacho et al. / Procedia Structural Integrity 67 (2025) 47–52 D.A. Triana-Camacho et al. / Structural Integrity Procedia 00 (2024) 000–000
52
6
References
ASTM International, 2010. ASTM Standard C 1157-08a: Standard performance specification for hydraulic cement. ASTM International, 2018. ASTM Standard C 349-18: Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). Buroni, F.C., Garc´ a-Mac´ as, E., 2021. Closed-form solutions for the piezoresistivity properties of short-fiber reinforced composites with percolation-type behavior. Carbon 184, 923–940. doi: https://doi.org/10.1016/j.carbon.2021.08.083 . Chung, D., Wang, Y., 2018. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Constr. Build. Mater. 94, 255–263. doi: https://doi.org/10.1016/j.cemconcomp.2018.09.017 . Dong, W., Li, W., Sun, Z., Ibrahim, I., Sheng, D., 2022. Intrinsic graphene / cement-based sensors with piezoresistivity and superhydrophobicity capacities for smart concrete infrastructure. Autom. Constr. 133, 103983. doi: https://doi.org/10.1016/j.autcon.2021.103983 . Garc´ a-Mac´ as, E., D’Alessandro, A., Castro-Triguero, R., Pe´rez-Mira, D., Ubertini, F., 2017. Micromechanics modeling of the uniaxial strain- sensing property of carbon nanotube cement-matrix composites for shm applications. Compos. Struct. 163, 195–215. doi: https://doi.org/ 10.1016/j.compstruct.2016.12.014 . Lee, S., Kim, S., Kang, H.J., Kim, H.W., Seok, O., Moon, J.H., Bahng, W., Kim, H.J., Ha, M.W., 2019. E ff ect of sweeping direction on the capacitance-voltage behavior of sputtered sio2 / 4h-sic metal-oxide semiconductors after nitric oxide post-deposition annealing. Phys. Scr. 94, 125811. doi: 10.1088/1402 ‐ 4896/ab432c . Long, W.J., 2023. Chapter 6 - design, performance, and mechanism of cement-based materials with 2d nanomaterials, in: Khayat, K.H., Meng, W. (Eds.), Nanotechnol. Civ. Infrastruc.. Elsevier. Micro and Nano Technologies, pp. 127–159. doi: https://doi.org/10.1016/ B978 ‐ 0 ‐ 12 ‐ 817832 ‐ 4.00001 ‐ 8 . Lopes, L.C., Santos, A., Bueno, P.R., 2021. Measuring quantum conductance and capacitance of graphene using impedance-derived capacitance spectroscopy. Carbon 184, 821–827. doi: https://doi.org/10.1016/j.carbon.2021.08.055 . Madbouly, A.I., Mokhtar, M., Morsy, M., 2020. Evaluating the performance of rgo / cement composites for shm applications. Constr. Build. Mater. 250, 118841. doi: https://doi.org/10.1016/j.conbuildmat.2020.118841 . Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M., 2010. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. doi: 10.1021/nn1006368 . Ozturk, M., Chung, D., 2021. Capacitance-based stress self-sensing e ff ectiveness of a model asphalt without functional component. Constr. Build. Mater. 294, 123591. doi: https://doi.org/10.1016/j.conbuildmat.2021.123591 . Pan, H.H., Guan, J.C., 2022. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and pzt sensor. Constr. Build. Mater. 324, 126685. doi: https://doi.org/10.1016/j.conbuildmat.2022.126685 . Pan, H.H., Lai, T.Z., Chaipanich, A., Wittinanon, T., 2022. E ff ect of graphene on the piezoelectric properties of cement-based piezoelectric composites. Sens. Actuators A: Phys. 346, 113882. doi: https://doi.org/10.1016/j.sna.2022.113882 . Qi, G., Wang, Q., Zhang, R., Guo, Z., Zhan, D., Liu, S., 2023. E ff ect of rgo / gnp on the electrical conductivity and piezoresistance of cement-based composite subjected to dynamic loading. Constr. Build. Mater. 368, 130340. doi: https://doi.org/10.1016/j.conbuildmat.2023. 130340 . Rodr´ guez, O., Denuault, G., 2021. The electron transfer kinetics of adsorbed species derived by sampled current voltammetry. J. Electroanal. Chem. 882, 115021. doi: https://doi.org/10.1016/j.jelechem.2021.115021 . Shi, K., Chung, D., 2018. Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling. Smart Struct. Syst. 27, 105011. doi: https://orcid.org/0000 ‐ 0002 ‐ 4746 ‐ 6276 . Triana-Camacho, D.A., Quintero-Orozco, J.H., Mej´ a-Ospino, E., Castillo-Lo´pez, G., Garc´ a-Mac´ as, E., 2023. Piezoelectric composite cements: Towards the development of self-powered and self-diagnostic materials. Cem. Concr. Compos. 139, 105063. doi: https://doi.org/10. 1016/j.cemconcomp.2023.105063 . Zhai, S., Pang, B., Liu, G., Zhang, Y., Xu, K., She, W., Zhang, Y., 2021. Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar. Constr. Build. Mater. 275, 122119. doi: https://doi.org/10.1016/j.conbuildmat.2020.122119 . Zhang, Q., Sun, H., Liu, W., Zhou, Z., Yuan, L., Ren, Z., Geng, D., Wang, J., Cheng, X., 2021. E ff ect of rgo on the mechanical strength, hydration and micromorphology of cement incorporated silica fume. Constr. Build. Mater. 300, 124325. doi: https://doi.org/10.1016/ j.conbuildmat.2021.124325 . Zhao, L., Guo, X., Song, L., Song, Y., Dai, G., Liu, J., 2020. An intensive review on the role of graphene oxide in cement-based materials. Constr. Build. Mater. 241, 117939. doi: https://doi.org/10.1016/j.conbuildmat.2019.117939 .
Made with FlippingBook - professional solution for displaying marketing and sales documents online