Issue 67
H. S. Vishwanatha et alii, Frattura ed Integrità Strutturale, 67 (2024) 43-57; DOI: 10.3221/IGF-ESIS.67.04
[7] Elices, M., Guinea, G. V., Gómez, J., Planas, J. (2001). The cohesive zone model: Advantages, limitations and challenges, Eng. Fract. Mech., 69(2), pp. 137–163, DOI: 10.1016/S0013-7944(01)00083-2. [8] Elsharief, A., Cohen, M.D., Olek, J. (2003). Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone, Cem. Concr. Res., 33(11), pp. 1837–49, DOI: 10.1016/S0008-8846(03)00205-9. [9] Chen, B., Liu, J. (2004). Effect of aggregate on the fracture behavior of high strength concrete, Constr. Build. Mater., 18(8), pp. 585–590, DOI: 10.1016/j.conbuildmat.2004.04.013. [10] Akçao ǧ lu, T., Tokyay, M., Çelik, T. (2004). Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression, Cem. Concr. Compos., 26(6), pp. 633–638, DOI: 10.1016/S0958-9465(03)00092-1. [11] Song, S.H., Paulino, G.H., Buttlar, W.G. (2006). A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Eng. Fract. Mech., 73(18), pp. 2829–2848, DOI: 10.1016/j.engfracmech.2006.04.030. [12] Oliver, J., Huespe, A.E., Sánchez, P.J. (2006). A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM, Comput. Methods Appl. Mech. Eng., 195(37–40), pp. 4732–4752, DOI: 10.1016/j.cma.2005.09.020. [13] Kozicki, J., Tejchman, J. (2007).Effect of aggregate structure on fracture process in concrete using 2D lattice model. Archives of Mechanics, 59, pp. 365–384. [14] Sagar, R.V., Prasad, B.K.R., Gopalakrishnan, A.R. (2008). Size-independent specific fracture energy of high strength concrete beams using hybrid method, Indian Concr. J., 82(11), pp. 30–42. [15] Danielson, K.T., Akers, S.A., O’Daniel, J.L., Adley, M.D., Garner, S.B. (2008). Large-Scale Parallel Computation Methodologies for Highly Nonlinear Concrete and Soil Applications, J. Comput. Civ. Eng., 22(2), pp. 140–146, DOI: 10.1061/(asce)0887-3801(2008)22:2(140). [16] Akcay, B., Agar-Ozbek, A.S., Bayramov, F., Atahan, H.N., Sengul, C., Tasdemir, M.A. (2012). Interpretation of aggregate volume fraction effects on fracture behavior of concrete, Constr. Build. Mater., 28(1), pp. 437–443, DOI: 10.1016/j.conbuildmat.2011.08.080. [17] Huang, J., Chen, M., Sun, J. (2014). Mesoscopic characterization and modeling of microcracking in cementitious materials by the extended finite element method, Theor. Appl. Mech. Lett., 4(4), pp. 041001, DOI: 10.1063/2.1404101. [18] Michels, J., Zile, E., Czaderski, C., Motavalli, M. (2014). Debonding failure mechanisms in prestressed CFRP/epoxy/concrete connections, Eng. Fract. Mech., 132, pp. 16–37, DOI: 10.1016/j.engfracmech.2014.10.012. [19] Huang, Y., Yang, Z., Ren, W., Liu, G., Zhang, C. (2015). 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model, Int. J. Solids Struct., 67–68, pp. 340–352, DOI: 10.1016/j.ijsolstr.2015.05.002. [20] Wang, X.F., Yang, Z.J., Yates, J.R., Jivkov, A.P., Zhang, C. (2015). Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Constr. Build. Mater., 75, pp. 35–45, DOI: 10.1016/j.conbuildmat.2014.09.069. [21] Abdel Wahab, M.M. (2015).Simulating mode I fatigue crack propagation in adhesively-bonded composite joints. Fatigue and Fracture of Adhesively-Bonded Composite Joints, pp. 323–344. [22] Trivedi, N., Singh, R.K., Chattopadhyay, J. (2015). A comparative study on three approaches to investigate the size independent fracture energy of concrete, Eng. Fract. Mech., 138, pp. 49–62, DOI: 10.1016/j.engfracmech.2015.03.021. [23] Hussein, H.H., Walsh, K.K., Sargand, S.M., Steinberg, E.P. (2016). Interfacial Properties of Ultrahigh-Performance Concrete and High-Strength Concrete Bridge Connections, J. Mater. Civ. Eng., 28(5), DOI: 10.1061/(asce)mt.1943-5533.0001456. [24] Trawi ń ski, W., Bobi ń ski, J., Tejchman, J. (2016). Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray μ CT images, Eng. Fract. Mech., 168, pp. 204–226, DOI: 10.1016/j.engfracmech.2016.09.012. [25] Hao, Y., Hao, H. (2016). Finite element modelling of mesoscale concrete material in dynamic splitting test, Adv. Struct. Eng., 19(6), pp. 1027–1039, DOI: 10.1177/1369433216630828. [26] Zhou, R., Song, Z., Lu, Y. (2017). 3D mesoscale finite element modelling of concrete, Comput. Struct., 192, pp. 96– 113, DOI: 10.1016/j.compstruc.2017.07.009. [27] Zhang, Z., Song, X., Liu, Y., Wu, D., Song, C. (2017). Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm, Compos. Sci. Technol., 149, pp. 235–245, DOI: 10.1016/j.compscitech.2017.06.015. [28] Wang, J., Jivkov, A.P., Engelberg, D.L., Li, Q.M. (2019).Parametric Study of Cohesive ITZ in Meso-scale Concrete Model. Procedia Structural Integrity, 23, pp. 167–72.
56
Made with FlippingBook Learn more on our blog