PSI - Issue 66
Domenico Ammendolea et al. / Procedia Structural Integrity 66 (2024) 396–405 Author name / Structural Integrity Procedia 00 (2025) 000–000
405
10
Engineering Fracture Mechanics 301, 109996. https://doi.org/10.1016/j.engfracmech.2024.109996 Dinachandra, M., Alankar, A., 2020. A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics. Theoretical and Applied Fracture Mechanics 109, 102681. https://doi.org/10.1016/j.tafmec.2020.102681 Gaetano, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A., Ronchei, C., 2022a. An interface-based detailed micro-model for the failure simulation of masonry structures. Engineering Failure Analysis 142, 106753. https://doi.org/10.1016/j.engfailanal.2022.106753 Gaetano, D., Greco, F., Leonetti, L., Pascuzzo, A., Skrame, A., 2022b. Comparative finite element modelling approaches for the seismic vulnerability analysis of historical masonry structures: the case study of the Cathedral of Catanzaro (Italy). International Journal of Masonry Research and Innovation 7, 600–623. https://doi.org/10.1504/IJMRI.2022.126544 Gálvez, J.C., Elices, M., Guinea, G.V., Planas, J., 1998. Mixed Mode Fracture of Concrete under Proportional and Nonproportional Loading. International Journal of Fracture 94, 267–284. https://doi.org/10.1023/A:1007578814070 Greco, F., Leonetti, L., Luciano, R., Nevone Blasi, P., 2016. Effects of microfracture and contact induced instabilities on the macroscopic response of finitely deformed elastic composites. Composites Part B: Engineering 107, 233–253. https://doi.org/10.1016/j.compositesb.2016.09.042 Greco, F., Leonetti, L., Luciano, R., Pascuzzo, A., Ronchei, C., 2020. A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach. Procedia Structural Integrity, 1st Virtual Conference on Structural Integrity - VCSI1 25, 334–347. https://doi.org/10.1016/j.prostr.2020.04.038 Hillerborg, A., Modéer, M., Petersson, P.-E., 1976. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–781. https://doi.org/10.1016/0008-8846(76)90007-7 Khoei, A., Saadat, M.A., 2019. A nonlocal computational homogenization of softening quasi ‐ brittle materials. International Journal for Numerical Methods in Engineering 119. https://doi.org/10.1002/nme.6070 Kuhn, C., Müller, R., 2010. A continuum phase field model for fracture. Engineering Fracture Mechanics, Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross 77, 3625–3634. https://doi.org/10.1016/j.engfracmech.2010.08.009 Matouš, K., Geers, M.G.D., Kouznetsova, V.G., Gillman, A., 2017. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. Journal of Computational Physics 330, 192–220. https://doi.org/10.1016/j.jcp.2016.10.070 Miehe, C., Hofacker, M., Welschinger, F., 2010. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199, 2765–2778. https://doi.org/10.1016/j.cma.2010.04.011 Noii, N., Aldakheel, F., Wick, T., Wriggers, P., 2020. An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture. Computer Methods in Applied Mechanics and Engineering 361, 112744. https://doi.org/10.1016/j.cma.2019.112744 Pascuzzo, A., Yudhanto, A., Alfano, M., Lubineau, G., 2020. On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets. International Journal of Solids and Structures 198, 31–40. https://doi.org/10.1016/j.ijsolstr.2020.04.001 Pindera, M.-J., Khatam, H., Drago, A.S., Bansal, Y., 2009. Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches. Composites Part B: Engineering 40, 349–378. https://doi.org/10.1016/j.compositesb.2009.03.007 Plewa, T., Linde, T., Gregory Weirs, V. (Eds.), 2005. Adaptive Mesh Refinement - Theory and Applications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3–5, 2003, Lecture Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b138538 Sukumar, N., Chopp, D.L., Moës, N., Belytschko, T., 2001. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering 190, 6183–6200. https://doi.org/10.1016/S0045-7825(01)00215-8 Tvergaard, V., Hutchinson, J.W., 1992. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 40, 1377–1397. https://doi.org/10.1016/0022-5096(92)90020-3 Vellwock, A.E., Libonati, F., 2024. XFEM for Composites, Biological, and Bioinspired Materials: A Review. Materials 17, 745. https://doi.org/10.3390/ma17030745 Wu, J.-Y., 2017. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids 103, 72–99. https://doi.org/10.1016/j.jmps.2017.03.015 Wu, J.-Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.P.A., 2020. Chapter One - Phase-field modeling of fracture, in: Bordas, S.P.A., Balint, D.S. (Eds.), Advances in Applied Mechanics. Elsevier, pp. 1–183. https://doi.org/10.1016/bs.aams.2019.08.001
Made with FlippingBook Ebook Creator