PSI - Issue 66

Nur Mohamed Dhansay et al. / Procedia Structural Integrity 66 (2024) 87–101 Author name / Structural Integrity Procedia 00 (2025) 000–000

100 14

References

ASTM F136-13. 2012. Standard specification for wrought Titanium-6 Aluminium-4 Vanadium ELI (extra low interstitial) alloy for surgical implant applications . https://doi.org/10.1520/F0136-13 ASTM International. 2013. ASTM E647-13a Standard Test Method for Measurement of Fatigue Crack Growth Rates 1 . 1–50. https://doi.org/10.1520/E0647-13A.2 Aswath, P. B., Soboyejo, W. O., and Suresh, S. 1991. Microstructural Effects on Fatigue Crack Growth in Titanium Aluminides. In H. Kitagawa & T. Tanaka (Eds.), Conference on Fatigue and Fracture of Ordered Intermetallics Materials ( (Vol. 138, pp. 329–339). EMAS. Bantounas, I., Dye, D., and Lindley, T. C. 2009. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V. Acta Materialia , 57 (12), 3584–3595. https://doi.org/10.1016/j.actamat.2009.04.018 Becker, T. H., Dhansay, N. M., Haar, G. M. Ter, and Vanmeensel, K. 2020. Near-threshold fatigue crack growth rates of laser powder bed fusion produced Ti-Aal-4V. Acta Materialia , 197 , 269–282. https://doi.org/10.1016/j.actamat.2020.07.049 Boyce, B. L., and Ritchie, R. O. 2001. Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4V. Engineering Fracture Mechanics , 68 , 129–147. Campbell, F. 2008. Fatigue. In Elements of Metallurgy and Engineering Alloys (pp. 244–264). ASM International. Davidson, D. L. 1998. Damage mechaniscms in high cycle fatigue . Davidson, David. L., Campbell, J. B., and Page, R. A. 1991. The initiation and growth of fatigue cracks in a titanium aluminide alloy. Metallurgical Transactions A , 22 (2), 377–391. https://doi.org/https://doi.org/10.1007/BF02656806 Hines, J. A., and Lütjering, G. 1999. Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4V. Fatigue and Fracture of Engineering Materials and Structures , 22 (8), 657–665. https://doi.org/10.1046/j.1460-2695.1999.00217.x Inagaki, I., Takechi, T., Shirai, Y., and Ariyasu, N. 2014. Application and features of titanium for the aerospace industry. Nippon Steel & Sumitomo Metal Tech. Rep. , 106 (106), 22–27. Krüger, L., Grundmann, N., and Trubitz, P. 2015. Influence of Microstructure and Stress Ratio on Fatigue Crack Growth in a Ti-6-22-22-S alloy. Materials Today: Proceedings , 2 (0), S205–S211. https://doi.org/10.1016/j.matpr.2015.05.011 Kumar, P., Prakash, O., and Ramamurty, U. 2018. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Materialia , 154 (May), 246–260. https://doi.org/10.1016/j.actamat.2018.05.044 Kumar, P., and Ramamurty, U. 2019. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti–6Al–4V alloy. Acta Materialia , 169 (March), 45–59. https://doi.org/10.1016/j.actamat.2019.03.003 Leuders, S., Thöne, M., Riemer, a., Niendorf, T., Tröster, T., Richard, H. a., and Maier, H. J. 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue , 48 , 300–307. https://doi.org/10.1016/j.ijfatigue.2012.11.011 Leuders, S., Thöne, M., and Riemer, A. 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue , 48 (1), Art. 0. Liu, D., and Pons, D. J. 2018. Crack propagation mechanisms for creep fatigue: A consolidated explanation of fundamental behaviours from initiation to failure. Metals , 8 (8). https://doi.org/10.3390/met8080623 Nalla, R. K., Boyce, B. L., Campbell, J. P., Peters, J. O., and Ritchie, R. O. 2002. Influence of Microstructure on High-Cycle Fatigue of Ti-6Al 4V : Bimodal vs . Lamellar Structures . 33 (March). Newman, J. A. 2000. The Effects of Load Ratio on Threshold Fatigue Crack Growth of Aluminum Alloys . Virginia Polytechnic Institue and State University. Newman, J. A., Riddell, W. T., and Piascik, R. S. 2003. Analytical and Experimental Study of Near- Threshold Interactions Between Crack Closure Mechanisms . May . Niinomi, M., Akahori, T., and Eylon, D. 1999. Fatigue crack initiation and fatigue life prediction of Ti–6Al–4V ELI. In R. Boyer, D. Eylon, & G. Lutjering (Eds.), Fatigue behaviour of titanium alloys (pp. 307–314). TMS. Oberwinkler, B. 2011. Modeling the fatigue crack growth behavior of Ti-6Al-4V by considering grain size and stress ratio. Materials Science and Engineering A , 528 (18), 5983–5992. https://doi.org/10.1016/j.msea.2011.04.046 Oberwinkler, B., Riedler, M., and Eichlseder, W. 2010. Importance of local microstructure for damage tolerant light weight design of Ti-6Al-4V forgings. International Journal of Fatigue , 32 (5), 808–814. https://doi.org/10.1016/j.ijfatigue.2009.06.021 Pippan, R. 1991. Threshold and effective threshold of fatigue crack propagation in ARMCO iron II: The influence of environment. Materials Science and Engineering A , 138 (1), 15–22. https://doi.org/10.1016/0921-5093(91)90672-A Qiu, J., Feng, X., Ma, Y., Lei, J., Liu, Y., Huang, A., Rugg, D., and Yang, R. 2016. Fatigue crack growth behavior of beta-annealed Ti-6Al-2Sn 4Zr-xMo (x = 2, 4 and 6) alloys: Influence of microstructure and stress ratio. International Journal of Fatigue , 83 , 150–160. https://doi.org/10.1016/j.ijfatigue.2015.10.009 Sadananda, K., and Vasudevan, A. K. 2005. Fatigue crack growth behavior of titanium alloys. International Journal of Fatigue , 27 (10–12), 1255– 1266. https://doi.org/10.1016/j.ijfatigue.2005.07.001 Saxena, V. K., and Radhakrishnan, V. M. 1998. Effect of phase morphology on fatigue crack growth behavior of α - β titanium alloy - A crack closure rationale. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science , 29 (1), 245–261. https://doi.org/10.1007/s11661-998-0177-z Tan, C., Li, X., Sun, Q., Xiao, L., Zhao, Y., and Sun, J. 2015. Effect of α -phase morphology on low-cycle fatigue behavior of TC21 alloy. International Journal of Fatigue , 75 , 1–9. https://doi.org/10.1016/j.ijfatigue.2015.01.010 Tarik Hasib, M., Ostergaard, H. E., Li, X., and Kruzic, J. J. 2020. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation. In International Journal of Fatigue (p. 105955). https://doi.org/10.1016/j.ijfatigue.2020.105955 Tarik Hasib, M., Ostergaard, H. E., Li, X., and Kruzic, J. J. 2021. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation. International Journal of Fatigue , 142 , 105955. https://doi.org/10.1016/j.ijfatigue.2020.105955

Made with FlippingBook Ebook Creator