PSI - Issue 66

Martha Dima et al. / Procedia Structural Integrity 66 (2024) 153–160 Author name / Structural Integrity Procedia 00 (2025) 000–000

159

7

References

[1] M.S. Bisong, V.E. Mikhailov, V.V. Lepov, S.N. Makharova, Microstructure influence on crack resistance of steels welded structures operated in an extremely cold environment, Procedia Structural Integrity 20 (2019) 37–41. https://doi.org/10.1016/j.prostr.2019.12.112. [2] I. Kandarakis, Luminescence in medical image science, Journal of Luminescence 169 (2016) 553–558. https://doi.org/10.1016/j.jlumin.2014.11.009. [3] M.P. Lebedev, O.V. Startsev, A.K. Kychkin, Development of climatic tests of polymer materials for extreme operating conditions, Procedia Structural Integrity 20 (2019) 81–86. https://doi.org/10.1016/j.prostr.2019.12.119. [4] C. Michail, P. Liaparinos, N. Kalyvas, I. Kandarakis, G. Fountos, I. Valais, Phosphors and Scintillators in Biomedical Imaging, Crystals 14 (2024) 169. https://doi.org/10.3390/cryst14020169. [5] V.B. Mykhaylyk, H. Kraus, M. Saliba, Bright and fast scintillation of organolead perovskite MAPbBr 3 at low temperatures, Materials Horizons 6 (2019) 1740–1747. https://doi.org/10.1039/C9MH00281B. [6] S. Patri, H. Kumar, K.K. Prasad, C. Meikandamurthy, B.K. Sreedhar, R. Vijayashree, V. Prakash, P. Selvaraj, Failure analysis of structural screw joint in a start-up neutron detector handling mechanism, Procedia Structural Integrity 14 (2019) 688–695. https://doi.org/10.1016/j.prostr.2019.05.086. [7] A. Saxena, Challenges in predicting crack growth in structures operating in extreme environments, Procedia Structural Integrity 14 (2019) 774–781. https://doi.org/10.1016/j.prostr.2019.07.055. [8] T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Temperature Dependence of Scintillation Properties of Bright Oxide Scintillators for Well-Logging, Japanese Journal of Applied Physics 52 (2013) 076401. https://doi.org/10.7567/JJAP.52.076401. [9] V.V. Bogomolov, G.A. Dosovitskiy, A.F. Iyudin, M.V. Korzhik, S.A. Tikhomirov, S.I. Svertilov, D.Yu. Kozlov, I.V. Yashin, The Timing and Spectral Characteristics of Detectors Based on a Ce:GAGG Inorganic Scintillator Using Photomultiplier Tubes and Silicon Photodetectors, Instrum Exp Tech 63 (2020) 633–640. https://doi.org/10.1134/S0020441220050097. [10] G. Dilillo, R. Campana, N. Zampa, F. Fuschino, G. Pauletta, I. Rashevskaya, F. Ambrosino, M. Baruzzo, D. Cauz, D. Cirrincione, M. Citossi, G.D. Casa, B.D. Ruzza, G. Galgóczi, C. Labanti, Y. Evangelista, J. Ripa, A. Vacchi, F. Tommasino, E. Verroi, F. Fiore, A summary on an investigation of GAGG:Ce afterglow emission in the context of future space applications within the HERMES nanosatellite mission, in: Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, SPIE, 2020: pp. 1310–1317. https://doi.org/10.1117/12.2561053. [11] C. Kim, W. Lee, A. Melis, A. Elmughrabi, K. Lee, C. Park, J.-Y. Yeom, A Review of Inorganic Scintillation Crystals for Extreme Environments, Crystals 11 (2021) 669. https://doi.org/10.3390/cryst11060669. [12] L. Martinazzoli, S. Nargelas, P. Bohá č ek, R. Calá, M. Dušek, J. Rohlí č ek, G. Tamulaitis, E. Auffray, M. Nikl, Compositional engineering of multicomponent garnet scintillators: towards an ultra-accelerated scintillation response, Materials Advances 3 (2022) 6842–6852. https://doi.org/10.1039/D2MA00626J. [13] L. Martinazzoli, N. Kratochwil, S. Gundacker, E. Auffray, Scintillation properties and timing performance of state-of-the-art Gd 3 Al 2 Ga 3 O 12 single crystals, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1000 (2021) 165231. https://doi.org/10.1016/j.nima.2021.165231. [14] I. Murata, S. Kusaka, K. Minami, N. Saraue, S. Tamaki, I. Kato, F. Sato, Design of SPECT for BNCT to measure local boron dose with GAGG scintillator, Applied Radiation and Isotopes 181 (2022) 110056. https://doi.org/10.1016/j.apradiso.2021.110056. [15] M. Yoneyama, J. Kataoka, M. Arimoto, T. Masuda, M. Yoshino, K. Kamada, A. Yoshikawa, H. Sato, Y. Usuki, Evaluation of GAGG:Ce scintillators for future space applications, J. Inst. 13 (2018) P02023. https://doi.org/10.1088/1748-0221/13/02/P02023. [16] K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl, Y. Fujimoto, A. Fukabori, A. Yoshikawa, 2 inch diameter single crystal growth and scintillation properties of Ce:Gd 3 Al 2 Ga 3 O 12 , Journal of Crystal Growth 352 (2012) 88–90. https://doi.org/10.1016/j.jcrysgro.2011.11.085. [17] B. Seitz, N. Campos Rivera, A.G. Stewart, Energy Resolution and Temperature Dependence of Ce:GAGG Coupled to 3 mm x 3 mm Silicon Photomultipliers, IEEE Transactions on Nuclear Science 63 (2016) 503–508. https://doi.org/10.1109/TNS.2016.2535235. [18] P. Sibczynski, J. Iwanowska-Hanke, M. Moszy ń ski, L. Swiderski, M. Szaw ł owski, M. Grodzicka, T. Szcz ęś niak, K. Kamada, A. Yoshikawa, Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 772 (2015) 112–117. https://doi.org/10.1016/j.nima.2014.10.041. [19] G. Dilillo, N. Zampa, R. Campana, F. Fuschino, G. Pauletta, I. Rashevskaya, F. Ambrosino, M. Baruzzo, D. Cauz, D. Cirrincione, M. Citossi, G.D. Casa, B. Di Ruzza, Y. Evangelista, G. Galgóczi, C. Labanti, J. Ripa, F. Tommasino, E. Verroi, F. Fiore, A. Vacchi, Space applications of GAGG:Ce scintillators: a study of afterglow emission by proton irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 513 (2022) 33–43. https://doi.org/10.1016/j.nimb.2021.12.006. [20] J. Komar, P. Solarz, A. Je ż owski, M. G ł owacki, M. Berkowski, W. Ryba-Romanowski, Investigation of intrinsic and extrinsic defects in solid solution Gd 3 (Al,Ga) 5 O 12 crystals grown by the Czochralski method, Journal of Alloys and Compounds 688 (2016) 96–103. https://doi.org/10.1016/j.jallcom.2016.07.139. [21] Q. You, H. Lin, R. Hong, Z. Han, D. Zhang, Y. Ding, Structural and Scintillation Properties of Ce 3+ :Gd 3 Al 3 Ga 2 O 12 Translucent Ceramics Prepared by One-Step Sintering, Materials 16 (2023) 3373. https://doi.org/10.3390/ma16093373. [22] H. Zhao, J. Xu, J. Li, S. Liu, M. Zhang, Z. Jiang, X. Chen, X. Sun, Fabrication of Al 2 O 3 GAGG:Ce composite ceramic phosphors with excellent color quality for high-power laser-driven lighting, Journal of the European Ceramic Society 44 (2024) 373–382. https://doi.org/10.1016/j.jeurceramsoc.2023.08.045. [23] Y. Zhu, S. Qian, Z. Wang, H. Guo, L. Ma, Z. Wang, Q. Wu, Scintillation properties of GAGG:Ce ceramic and single crystal, Optical Materials 105 (2020) 109964. https://doi.org/10.1016/j.optmat.2020.109964. [24] H. Wei, V. Martin, A. Lindsey, M. Zhuravleva, C.L. Melcher, The scintillation properties of CeBr 3-x Cl x single crystals, Journal of Luminescence 156 (2014) 175–179. https://doi.org/10.1016/j.jlumin.2014.08.015. [25] M. Loyd, L. Stand, D. Rutstrom, Y. Wu, J. Glodo, K. Shah, M. Koschan, C.L. Melcher, M. Zhuravleva, Investigation of CeBr 3 − x I x

Made with FlippingBook Ebook Creator