PSI - Issue 66
Albena Doicheva et al. / Procedia Structural Integrity 66 (2024) 433–448 Author name / Structural Integrity Procedia 00 (2025) 000–000
438
6
{
}
(
)
[
]
2 6 qLk EA EIa Lka Lakk a h EIL kn ka H EI EAD LD − + − + + + = + . 3 2 2 2 3 2 1 2 1 1 2 2 3 12 4 4 6 2
(14)
{
}
1
2
where 1 2 h b h = − ; 1 1 1 4 D k k a k h = + + ; ( ) 2 2 1 2 3
1 2 n a h = + ; 2
1 2 n a h = − ;
2 2 (2 2 ) (2 2 ) 8 D kkaa bh kk a bh kka = + − + − + + . 2
2
1 2
1 3
2 3
Neglecting the normal force in the strain potential energy expression, the support reactions become ( )( ) 2 2 1 2 1 1 1 3 3 qLk EI Lk a h H EID − − = ,
(15)
2 12 4 6 qLk а EI Lk a Lk h EID + + 2 2 3 1 1
2
H
(16)
=
,
2
1
(
)
2
2 3 qLk а EI Lk a EID − 3 2 3
2
H
(17)
=
.
3
1
4.2. Mathematical model of beam with asymmetrical cross-section Consider the cantilever beam with an asymmetric section from Fig. 2b). The three equilibrium conditions of statics give us respectively: A qL = ,
(18)
(19)
1 2 3 N H H H =− − + ,
qL
2
(
)
H z b H d − −
−
2
1
3
C
∑
0 M H
(20)
= → =
.
4
2
a
The bending moments for the beam will be:
2 qx M qLx H d H а H z b = − − − − − .
[
]
(21)
1
3
2
1
C
2
Substitute Equations (18)–(21) in Equation (6). We apply the first and third conditions from Equation (7). A system of two linear equations with respect to the two unknowns ( 1 3 and H H ) is obtained. We substitute them in Equation (20). The solutions give the formulas of the horizontal support reactions, provided below: [ ] ( ) { } { } 2 2 2 1 2 2 3 3 2 2 3 3 1 3 4 3 3 6 qLk EA EI Lak h EIL kn ka Lakk n a d H EI EAD LD − − + − + + + = + , (22)
Made with FlippingBook Ebook Creator