PSI - Issue 66
Umberto De Maio et al. / Procedia Structural Integrity 66 (2024) 495–501 Author name / Structural Integrity Procedia 00 (2025) 000–000
501
7
Cusatis, G., Schauffert, E.A., 2009. Cohesive crack analysis of size effect. Engineering Fracture Mechanics 76, 2163–2173. De Maio, U., Gaetano, D., Greco, F., Lonetti, P., Nevone Blasi, P., Pranno, A., 2023a. The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings 13, 1139. https://doi.org/10.3390/buildings13051139 De Maio, U., Gaetano, D., Greco, F., Lonetti, P., Pranno, A., 2023b. The damage effect on the dynamic characteristics of FRP-strengthened reinforced concrete structures. Composite Structures 309, 116731. https://doi.org/10.1016/j.compstruct.2023.116731 De Maio, U., Gaetano, D., Greco, F., Luciano, R., Pranno, A., 2024a. Degradation analysis of dynamic properties for plain concrete structures under mixed-mode fracture conditions via an improved cohesive crack approach. Frattura ed Integrità Strutturale 18, 422–439. https://doi.org/10.3221/IGF-ESIS.68.28 De Maio, U., Greco, F., Lonetti, P., Pranno, A., 2024b. A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis. Engineering Fracture Mechanics 301, 109996. https://doi.org/10.1016/j.engfracmech.2024.109996 De Maio, U., Greco, F., Nevone Blasi, P., Pranno, A., Sgambitterra, G., 2024c. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials. Materials 17, 705. https://doi.org/10.3390/ma17030705 Donea, J., Huerta, A., Ponthot, J.-Ph., Rodrïguez-Ferran, A., 2004. Arbitrary Lagrangian-Eulerian Methods, in: Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd, Chichester, UK, pp. 413–437. https://doi.org/10.1002/0470091355.ecm009 Geißler, G., Netzker, C., Kaliske, M., 2010. Discrete crack path prediction by an adaptive cohesive crack model. Engineering Fracture Mechanics 77, 3541–3557. https://doi.org/10.1016/j.engfracmech.2010.04.029 Greco, F., Leonetti, L., Lonetti, P., 2015. A novel approach based on ALE and delamination fracture mechanics for multilayered composite beams. Composites Part B: Engineering 78, 447–458. https://doi.org/10.1016/j.compositesb.2015.04.004 Greco, F., Leonetti, L., Nevone Blasi, P., 2014. Adaptive multiscale modeling of fiber-reinforced composite materials subjected to transverse microcracking. Composite Structures 113, 249–263. https://doi.org/10.1016/j.compstruct.2014.03.025 Greco, F., Lonetti, P., Blasi, P.N., 2007. An analytical investigation of debonding problems in beams strengthened using composite plates. Engineering Fracture Mechanics 74, 346–372. https://doi.org/10.1016/j.engfracmech.2006.05.023 Gupta, A., Krishnan, U.M., Mandal, T.K., Chowdhury, R., Nguyen, V.P., 2022. An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399, 115347. Lee, K., Moorthy, S., Ghosh, S., 1999. Multiple scale computational model for damage in composite materials. Computer Methods in Applied Mechanics and Engineering 172, 175–201. https://doi.org/10.1016/S0045-7825(98)00229-1 Lens, L.N., Bittencourt, E., d’Avila, V.M.R., 2009. Constitutive models for cohesive zones in mixed-mode fracture of plain concrete. Engineering Fracture Mechanics 76, 2281–2297. https://doi.org/10.1016/j.engfracmech.2009.07.020 Marfia, S., Monaldo, E., Sacco, E., 2022. Cohesive fracture evolution within virtual element method. Engineering Fracture Mechanics 269, 108464. https://doi.org/10.1016/j.engfracmech.2022.108464 Miehe, C., Gürses, E., 2007. A robust algorithm for configurational ‐ force ‐ driven brittle crack propagation with R ‐ adaptive mesh alignment. Numerical Meth Engineering 72, 127–155. https://doi.org/10.1002/nme.1999 Mindess, S., Lawrence, F.V., Kesler, C.E., 1977. The J-integral as a fracture criterion for fiber reinforced concrete. Cement and Concrete Research 7, 731–742. https://doi.org/10.1016/0008-8846(77)90057-6 Park, K., Paulino, G.H., Celes, W., Espinha, R., 2012. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Numerical Meth Engineering 92, 1–35. https://doi.org/10.1002/nme.3163 Paulino, G.H., Celes, W., Espinha, R., Zhang, Z. (Jenny), 2008. A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes. Engineering with Computers 24, 59–78. https://doi.org/10.1007/s00366-007-0069-7 Ponthot, J.-P., Belytschko, T., 1998. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering 152, 19–46. https://doi.org/10.1016/S0045-7825(97)00180-1 Rigby, R.H., Aliabadi, M.H., 1993. Mixed-mode J-integral method for analysis of 3D fracture problems using BEM. Engineering Analysis with Boundary Elements 11, 239–256. https://doi.org/10.1016/0955-7997(93)90026-H Shi, M., Zhong, H., Ooi, E.T., Zhang, C., Song, C., 2013. Modelling of crack propagation of gravity dams by scaled boundary polygons and cohesive crack model. Int J Fract 183, 29–48. https://doi.org/10.1007/s10704-013-9873-9 Theocaris, P.S., Andrianopoulos, N.P., Kourkoulis, S.K., 1989. Crack branching: A “twin-crack” model based on macroscopic energy fracture criteria. Engineering Fracture Mechanics 34, 1097–1107. https://doi.org/10.1016/0013-7944(89)90271-3 Truster, T.J., 2018. DEIP, discontinuous element insertion Program — Mesh generation for interfacial finite element modeling. SoftwareX 7, 162–170. https://doi.org/10.1016/j.softx.2018.05.002 Uribe-Suárez, D., Bouchard, P.-O., Delbo, M., Pino-Muñoz, D., 2020. Numerical modeling of crack propagation with dynamic insertion of cohesive elements. Engineering Fracture Mechanics 227, 106918. https://doi.org/10.1016/j.engfracmech.2020.106918 Wu, J.-Y., Nguyen, V.P., 2018. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids 119, 20–42. https://doi.org/10.1016/j.jmps.2018.06.006 Xu, X.-P., Needleman, A., 1994. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434. https://doi.org/10.1016/0022-5096(94)90003-5 Yang, Z., Chen, J., 2004. Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods. International Journal of Solids and Structures 41, 801–826. https://doi.org/10.1016/j.ijsolstr.2003.09.033 Zhou, F., Molinari, J.F., 2004. Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. Numerical Meth Engineering 59, 1–24. https://doi.org/10.1002/nme.857
Made with FlippingBook Ebook Creator