PSI - Issue 66
Ramdane Boukellif et al. / Procedia Structural Integrity 66 (2024) 55–70 Ramdane Boukellif et al. / Structural Integrity Procedia 00 (2025) 000 – 000
70 16
References Boukellif, R., Hilleke, S., Riesen, W., 2024. Integrity improvement of rotorcraft main gearbox (EASA.2019.C15), D2-7: Test report and conclusions. Datsyshyn, O., Panasyuk, V., 2020. Structural Integrity Assessment of Engineering Components Under Cyclic Contact. Structural Integrity 9, Springer Nature Switzerland AG. Depouhon, P., Sola, C., Descharrieres, B., Delabie, A., 2017. A stress based critical-plane approach for study of rolling contact fatigue crack propagation in planet gears. Erdogan, F., Sih, G.E., 1963. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 85, 519 – 527. Hannes, D., 2014. On fatigue crack growth modelling of surface initiated rolling contact fatigue using the asperity point load mechanism. Doctoral Thesis no. 85, Department of Solid Mechanics, School of Engineering Sciences KTH Royal Institute of Technology, Stockholm, Sweden. Hannes, D., Alfredsson, B., 2011. Rolling contact fatigue crack path prediction by the asperity point load mechanism, Engineering Fracture Mechanics 78, 2848-2869. Hannes, D., Alfredsson, B., 2014. Numerical investigation of the spall opening angle of surface initiated rolling contact fatigue, Engineering Fracture Mechanics 131, 538-556. Meray, F., Chaise, T., Gravouil, A., Depouhon, P., Descharrieres, B., Nélias, D., 2022. A novel SAM/X-FEM coupling approach for the simulation of 3D fatigue crack growth under rolling contact loading, Finite Elements in Analysis and Design Volume 206. Otsuka, Y., Fujii, Y., Maeda, K., 2004. A new testing method to obtain mode II fatigue crack growth characteristics of hard materials. Fatigue & Fracture of Engineering Materials & Structures 27, 203-212. Ringsberg, J. W., Bergkvist, A., 2003. On propagation of short rolling contact fatigue cracks. Fatigue & Fracture of Engineering Materials & Structures 23, no. 10, 969-983. Rybicki, E.F., Kanninen, M.F., 1977. Eng. Fract. Mech. 9, 931-938. Rycerz, P., Olver, A., Kadiric, A., 2017. Propagation of surface initiated rolling contact fatigue cracks in bearing steel. International Journal of Fatigue 97, 29-38. Sukumar, N., Chopp, D., Moran, B., 2003. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation, Engrg.Fract.Mech. 70, 29-48. Tallian, T.E., 1992. Failure Atlas for Hertz Contact Machine Elements. ASME press, New York. Trollé, B., Baietto, M.-C., Gravouil, A., Mai, S.H., Nguyen-Tajan, T.M.L., 2013. XFEM crack propagation under rolling contact fatigue, Procedia Engineering 66, 775-782. Schöllmann, M., Fulland, M., Richard, H.A., 2003. Development of a new software for adaptive crack growth simulations in 3D structures. Engineering Fracture Mechanics 70, 221-230. Schöllmann, M., Kullmer, G., Fulland, M., Richard, H. A., 2001. A new criterion for 3d crack growth under mixed mode (I+II+III) loading. In: M.de Freitas (Ed.): 6th International Conference on Biaxial/Multiaxial Fatigue & Fracture, Lisboa, Portugal, 589-596. Schöllmann, M., Richard, Hans A., Kullmer, G., Fulland, M., 2002. A new criterion for the prediction of crack development in multiaxially loaded structures, International Journal of Fracture 117, 129 – 141. Zaid, M., Bonnand, V., Doquet, V., Chiaruttini, V., Pacou, D., Depouhon, P., 2022. Fatigue crack growth in bearing steel under cyclic mode II + static biaxial compression, International Journal of Fatigue 163, 107074.
Made with FlippingBook Ebook Creator