PSI - Issue 66

A.R. Pelton et al. / Procedia Structural Integrity 66 (2024) 265–281 Pelton/ Structural Integrity Procedia 00 (2025) 000–000

281

17

Robertson, S. and R. Ritchie (2007). "In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects." Biomaterials 28: 700–709. Robertson, S. W., X. Y. Gong and R. O. Ritchie (2006). "Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol." Journal of Materials Science 41(3): 621-630. Robertson, S. W., M. Launey, O. Shelley, I. Ong, L. Vien, K. Senthilnathan, P. Saffari, S. Schlegel and A. R. Pelton (2015). "A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing." Journal of the Mechanical Behavior of Biomedical Materials 51: 119-131. Robertson, S. W., A. Mehta, A. R. Pelton and R. O. Ritchie (2007). "Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis." Acta Materialia 55(18): 6198-6207. Robertson, S. W., A. R. Pelton and R. O. Ritchie (2012). "Mechanical Fatigue and Fracture of Nitinol." International Materials Reviews 57(1): 1 36. Robertson, S. W. and R. O. Ritchie (2008). "A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube." Journal of Biomedical Materials Research Part B: Applied Biomaterials 84B: 26-33. Robertson, S. W., R. O. Ritchie, A. Mehta, X.-Y. Gong and A. R. Pelton (2008). Ultrahigh-Resolution In Situ Diffraction Characterization of the Local Mechanics at a Growing Crack Tip in Nitinol. SMST. B. Berg, M. R. Mitchell and J. Proft. Pacific Grove, California, SMST: 35-42. Roiko, A., S. Cook, B. Berg, W. Falk and J. D. Weaver (2025). "Observation and modeling of potential sub-threshold damage growth mechanism for nitinol in ultra-high cycle fatigue." International Journal of Fatigue 190. Roiko, A. and Y. Murakami (2012). "A design approach for components in ultralong fatigue life with step loading." International Journal of Fatigue 41: 140–149. Roiko, A. and J. Solin (2014). "Measurement of small cracks initiating from inclusions, Focused Ion Beam notches and drilled holes." International Journal of Fatigue 62: 154-158. Stankiewicz, J. M., S. W. Robertson and R. O. Ritchie (2007). "Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents." Journal of Biomedical Materials Research Part A 81A(3): 685-691. Stöckel, D., A. R. Pelton and T. Duerig (2004). "Self-expanding Nitinol Stents: Material and Design Considerations." European Radiology 14: 292-301. Suresh, S. (1998). Fatigue of Materials Cambridge University Press. Suresh, S. and R. O. Ritchie (1984). "Propagation of Short Fatigue Cracks." International Metals Review 29(6): 445-475. Urbano, M. F., A. Cadelli, F. Sczerzenie, P. Luccarelli, S. Beretta and A. Coda (2015). "Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications." Shape Memory and Superelasticity 1(2): 240-251. Weaver, J. D., G. M. Sena, K. I. Aycock, A. Roiko, W. M. Falk, S. Sivan and B. T. Berg (2023). "Rotary Bend Fatigue of Nitinol to One Billion Cycles." Shape Memory and Superelasticity 9(1): 50-73.

Made with FlippingBook Ebook Creator