PSI - Issue 66
Domentico Ammendolea et al. / Procedia Structural Integrity 66 (2024) 350–361 Author name / Structural Integrity Procedia 00 (2025) 000–000
360
11
Acknowledgements Arturo Pascuzzo gratefully acknowledges financial support from Telematic University Pegaso for the research grant “Development of innovative materials, techniques and technologies and sustainable processes for obtaining bioproducts in the industrial, civil and medical fields”. Girolamo Sgambitterra gratefully acknowledges financial support from the Next Generation EU—Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of ‘Innovation Ecosystems’, building ‘Territorial R&D Leaders’ (Directorial Decree n. 2021/3277)—project Tech4You—Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. References Ambati, M., Gerasimov, T., De Lorenzis, L., 2015. Phase-field modeling of ductile fracture. Computational Mechanics 55, 1017-1040. Ammendolea, D., Fabbrocino, F., Leonetti, L., Lonetti, P., Pascuzzo, A., 2024. An efficient moving-mesh strategy for predicting crack propagation in unidirectional composites: Application to materials reinforced with aligned CNTs. Composite Structures 118652. Ammendolea, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A., 2023a. Fatigue crack growth simulation using the moving mesh technique. 46, 4606-4627. Ammendolea, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A., 2023b. A numerical failure analysis of nano-filled ultra-high-performance fiber-reinforced concrete structures via a moving mesh approach. Theoretical and Applied Fracture Mechanics 125, 103877. Berto, L., Saetta, A., Scotta, R., Vitaliani, R., 2002. An orthotropic damage model for masonry structures. 55, 127-157. Chen, W.-X., Wu, J.-Y., 2022. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics. Theoretical and Applied Fracture Mechanics 117, 103153. COMSOL, 2018. COMSOL Multiphysics® v. 5.4. Stockholm, Sweden. D’Altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G., de Miranda, S., 2019. Chapter 1 - A review of numerical models for masonry structures, in." Numerical Modeling of Masonry and Historical Structures" . Ghiassi, B. and Milani, G., Woodhead Publishing: 3-53. Driesen, C., Degée, H., Vandoren, B., 2021. Efficient modeling of masonry failure using a multiscale domain activation approach. Computers & Structures 251, 106543. Gaetano, D., Greco, F., Leonetti, L., Lonetti, P., Pascuzzo, A., Ronchei, C., 2022a. An interface-based detailed micro-model for the failure simulation of masonry structures. Engineering Failure Analysis 142, 106753. Gaetano, D., Greco, F., Leonetti, L., Pascuzzo, A., Skrame, A., 2022b. Comparative finite element modelling approaches for the seismic vulnerability analysis of historical masonry structures: the case study of the Cathedral of Catanzaro (Italy). International Journal of Masonry Research and Innovation 7, 600-623. Greco, F., Ammendolea, D., Lonetti, P., Pascuzzo, A., 2021. Crack propagation under thermo-mechanical loadings based on moving mesh strategy. Theoretical and Applied Fracture Mechanics 114, 103033. Greco, F., Gaetano, D., Leonetti, L., Lonetti, P., Pascuzzo, A., 2022. Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms. Frattura ed integrità strutturale 16, Greco, F., Leonetti, L., Lonetti, P., Blasi, P. N., Pascuzzo, A., Porco, G. J. F. e. I. S., 2024. An interface-based microscopic model for the failure analysis of masonry structures reinforced with timber retrofit solutions. 18, 210-226. Greco, F., Leonetti, L., Luciano, R., Nevone Blasi, P., 2016. An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material. Composite Structures 153, 972-988. Lonetti, P., Pascuzzo, A., 2016. A numerical study on the structural integrity of self-anchored cable-stayed suspension bridges. Frattura ed Integrita Strutturale 10, 359-376. Lourenço, P. B., 2002. Computations on historic masonry structures. 4, 301-319. Lourénço, P. B., De Borst, R., Rots, J. G., 1997. A plane stress softening plasticity model for orthotropic materials. 40, 4033-4057. Luciano, R., Sacco, E., 1997. Homogenization technique and damage model for old masonry material. International Journal of Solids and Structures 34, 3191-3208. Pascuzzo, A., Greco, F., Leonetti, L., Lonetti, P., Pranno, A., Ronchei, C., 2022a. Investigation of mesh dependency issues in the simulation of crack propagation in quasi-brittle materials by using a diffuse interface modeling approach. 45, 801-820. Pascuzzo, A., Greco, F., Lonetti, P., Ammendolea, D., 2022b. Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M − integral method. Engineering Failure Analysis 141, 106627. Pepe, M., Pingaro, M., Trovalusci, P., Reccia, E., Leonetti, L., 2019. Micromodels for the in-plane failure analysis of masonry walls: Limit Analysis, FEM and FEM/DEM approaches. Frattura ed Integrità Strutturale 14, 504-516. Pulatsu, B., Bretas, E., Lourenco, P., 2016. Discrete element modeling of masonry structures: Validation and application. Earthquakes and Structures 11, 563-582. Trovalusci, P., Capecchi, D., Ruta, G., 2009. Genesis of the multiscale approach for materials with microstructure. Archive of Applied Mechanics 79, 981-997. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M. L., Murrali, A., 2015. Scale-dependent homogenization of random composites as micropolar continua. European Journal of Mechanics - A/Solids 49, 396-407. Vandoren, B., De Proft, K., Simone, A., Sluys, L. J., 2013. Mesoscopic modelling of masonry using weak and strong discontinuities. Computer Methods in Applied Mechanics and Engineering 255, 167-182.
Made with FlippingBook Ebook Creator