Issue 66

W. Frenelus et alii, Frattura ed Integrità Strutturale, 66 (2023) 56-87; DOI: 10.3221/IGF-ESIS.66.04

[118] Felicetti, R. (2013). Assessment Methods of Fire Damages in Concrete Tunnel Linings. Fire Technol., 49, pp. 509– 529. DOI: 10.1007/s10694-011-0229-6 [119] Duan, L., Zhang, Y., Lai, J. (2019). Influence of Ground Temperature on Shotcrete-to-Rock Adhesion in Tunnels. Adv. Mater. Sci. Eng., 2019, p. 8709087. DOI: 10.1155/2019/8709087 [120] Yang, C., Peng, F.L., Xu, K., Zheng, L.N. (2019). Feasibility study on the geothermal utility tunnel system. Sustainable Cities and Soc., 46, p. 101445. DOI: 10.1016/j.scs.2019.101445 [121] Cheng, Q.X., Lu, A.Z., Yin, C.L. (2021). Influence of unsteady temperature on the stress field of a deep buried circular lining tunnel. Comput Geotech., 132, p. 104010. DOI: 10.1016/j.compgeo.2021.104010 [122] Tomar, M.S., Khurana, S. (2019). Impact of passive fire protection on heat release rates in road tunnel fire: A review. Tunn Undergr Space Technol., 85, pp. 149–159. DOI: 10.1016/j.tust.2018.12.018 [123] Li, Y.Z., Ingason, H. (2012). The maximum ceiling gas temperature in a large tunnel fire. Fire Safety J. 48, pp. 38– 48. DOI: 10.1016/j.firesaf.2011.12.011 [124] Li, J., Zhang, M. (2022). Physics and applications of Raman distributed optical fiber sensing. Light: Sci. & Appl., 11, p. 128. DOI: 10.1038/s41377-022-00811-x [125] Sturm, P., Beyer, M., Rafiei, M. (2017). On the problem of ventilation control in case of a tunnel fire event. Case Studies in Fire Safety, 7, pp. 36–43. DOI: 10.1016/j.csfs.2015.11.001 [126] Leung, C.K.Y., Wan, K.T., Inaudi, D., Bao, X., Habel, W., Zhou, Z., Ou, J., Ghandehari, M., Wu, H.C., Imai, M. (2015). Review: optical fiber sensors for civil engineering Applications. Materials and Structures, 48, pp. 871–906. DOI: 10.1617/s11527-013-0201-7 [127] Lei, B., He, B., Zhao, Z., Xu, G., Wu, B. (2021). A method for identifying the fire status through ventilation systems using tracer gas for improved rescue effectiveness in roadway drivage of coal mines. Process Safety Environ. Protect., 151, pp. 151–157. DOI: 10.1016/j.psep.2021.05.010 [128] Perez-Herrera, R.A., Lopez-Amo, M. (2013). Fiber optic sensor networks. Optical Fiber Technol., 19, pp. 689–699. DOI: 10.1016/j.yofte.2013.07.014 [129] Failleau, G., Beaumonta, O., Razouk, R., Delepine-Lesoille, S., Landolt, M., Courthial, B., Hénault, J.M., Martinot, F., Bertrand, J., Haya, B. (2018). A metrological comparison of Raman-distributed temperature sensors. Measurement, 116, pp. 18–24. DOI: 10.1016/j.measurement.2017.10.041 [130] Muanenda, Y., Oton, C.J., Di Pasquale, F. (2019). Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys., 7, p. 155. DOI: 10.3389/fphy.2019.00155 [131] Sun, M., Tang, Y., Yang, S., Li, J., Sigrist, M.W., Dong, F. (2016). Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System. Sensors, p. 16, p. 829. DOI: 10.3390/s16060829 [132] Habel, W.R., Bismarck, A. (2000). Optimization of the adhesion of fiber-optic strain sensors embedded in cement matrices; a study into long-term fiber strength. J. Struct. Control. 7 (1), pp. 51-76. DOI: 10.1002/stc.4300070105 [133] Barbosa, C., Malva, R., Silva, A., Moretti, G., Suzuki, D., Gonçalves, L. (2014). Automatic Monitoring System for Continuous Structural Assessment of Tunnels: Application Results and Insights. In Proceedings of the World Tunnel Congress 2014 – Tunnels for a better Life. Foz do Iguaçu, Brazil. [134] Schwamb, T., Soga, K., Mair, R.J., Elshafie, M.Z.E.B., Sutherden, R., Boquet, C., Greenwood, J. (2014). Fibre optic monitoring of a deep circular excavation. Proceedings of the Institution of Civil Engineers, Geotech Eng., 167 (1300036), pp. 144-154. DOI: 10.1680/geng.13.00036 [135] Forbes, B., Vlachopoulos, N., Diederichs, M.S., Hyett, A.J., Punkkinen, A. (2020). An in situ monitoring campaign of a hard rock pillar at great depth within a Canadian mine. J. Rock Mech. Geotech. Eng., 12, pp. 427-448. DOI: 10.1016/j.jrmge.2019.07.018 [136] Monsberger, C.M., Lienhart, W., Moritz, B. (2018). In-situ assessment of strain behaviour inside tunnel linings using distributed fibre optic sensors. Geomech & Tunn., 11, pp. 701-709. DOI: 10.1002/geot.201800050 [137] Bennett, P.J., Kobayashi, Y., Soga, K., Wright, P. (2010). Wireless sensor network for monitoring transport tunnels. Proceedings of the Institution of Civil Engineers, Geotech. Eng., 153, pp. 147-156. DOI: 0.1680/geng.2010.163.3.147 [138] Guo, L, He Y. (2022). Optimal control and nonlinear numerical simulation analysis of tunnel rock deformation parameters. Nonlinear Engineering, 11, pp. 455–462. DOI: 10.1515/nleng-2022-0223 [139] Moyo, P., Brownjohn, J.M.W., Suresh, R., Tjin, S.C. (2005). Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Struct., 27, pp. 1828–1834. DOI: 10.1016/j.engstruct.2005.04.023 [140] Kerrouche, A., Boyle, W.J.O., Sun, T., Grattan, K.T.V. (2009). Design and in-the-field performance evaluation of compact FBG sensor system for structural health monitoring applications. Sensors and Actuators A, 151, pp. 107–112. DOI: 10.1016/j.sna.2009.01.021

86

Made with FlippingBook - professional solution for displaying marketing and sales documents online