Issue 66

A. J. Abdulridha, Frattura ed Integrità Strutturale, 66 (2023) 273-296; DOI: 10.3221/IGF-ESIS.66.17

R EFERENCES

[1] Naidoo, P. and Drosopoulos, G. (2020). Evaluation of the dynamic response of structures using auxetic-type base isolation, Frattura ed Integrità Strutturale, 51, pp. 52-70. DOI: 10.3221/IGF-ESIS .51.05. [2] Souri, O. and Mofid, M. (2023). Seismic evaluation of concentrically braced steel frames equipped with yielding elements and BRBs, Results in Engineering, 17, 100853. DOI:10.1016/j.rineng. 2022.100853. [3] Annan, C., Youssef, M. and El Naggar, M. (2009). Experimental evaluation of the seismic performance of modular steel-braced frames, Engineering Structures, 31, pp. 1435-1446. DOI: 10.1016/j.engstruct.2009.02.024. [4] Unal, A. and Kaltakci, M. (2016). Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application, Steel and Composite Structures, 21(4), pp. 687-702. DOI:10.12989/scs.2016.21.4.687. [5] Popov, E., Kasai, K. and Engelhardt, M. (1986). Advances in design of eccentrically braced frames, Bulletin of the New Zealand Society for Earthquake Engineering, 20(1), pp. 22-29. DOI: 10.5459 /bnzsee.20.1.22-29. [6] Bekda ş , G. and Nigdeli, S. (2017). Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction, Soil Dynamics and Earthquake Engineering, 92, pp. 443-461. DOI: 10.1016/j.soildyn.2016.10.019. [7] Brandão, F., Diógenes, A., Fernandes, J., Mesquita, E. and Betti, M. (2018). Seismic behavior assessment of a Brazilian heritage construction, Frattura ed Integrità Strutturale, 12(45), p. 14-32. DOI: 10.3221/IGF-ESIS.45.02. [8] Stratan, A., Dogariu, A. and Dubina, D. (2007). Bolted links for eccentrically braced frames: Influence of link stiffness, Proceedings of the 3rd International Conference on Steel and Composite Structures, ICSCS07 - Steel and Composite Structures, pp. 847-853. [9] Harba, I., Abdulridha, A. and ALShaar, A. (2023). Numerical analysis of reinforced concrete circular columns strengthening with CFRP under concentric and eccentric loadings, Frattura ed Integrità Strutturale, 63, pp. 190-205. DOI: 10.3221/IGF-ESIS.63.16. [10] Boursas, F. and Boutagouga, D. (2021). Parametric study of I-shaped shear connectors with different orientations in pushout test, Frattura ed Integrità Strutturale, 15(57), pp. 24-39. DOI: 10.3221/IGF-ESIS.57.03. [11] Bouaricha, A., Handel, N., Boutouta, A. and Djouimaa, S. (2021). Load bearing capacity of thin-walled rectangular and Ishaped steel sections of short both empty and concrete-filled columns, Frattura ed Integrità Strutturale, 15(58), pp. 77 85. DOI: 10.3221/igf-esis.58.06. [12] Sadeghi, A., Kazemi, H. and Samadi, M. (2021). Reliability and Reliability-based Sensitivity Analyses of Steel Moment Resisting Frame Structure subjected to Extreme Actions, Frattura ed Integrità Strutturale, 57, pp. 138-159. DOI: 10.3221/IGF-ESIS.57.12. [13] Razavi, S., Peron, M., Torgersen, J., Berto, F. and Mutignani, F. (2017). Effect of hot dip galvanization on the fatigue strength of steel bolted connections, Frattura ed Integrità Strutturale, 41, pp. 432-439. DOI: 10.3221/IGF-ESIS.41.54. [14] Yi, T-H., Li, H-N., Song, G. and Zhang, X-D. (2015). Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm, Structural Control and Health Monitoring, 22(4), pp. 667-681. DOI:10.1002/stc.1708. [15] Sun, H., Mordret, A., Prieto, G., Toksöz, M. and Büyüköztürk, O. (2017). Bayesian characterization of buildings using seismic interferometry on ambient vibrations, Mechanical Systems and Signal Processing, 85, pp. 468-486. DOI: 10.1016/j.ymssp.2016.08.038. [16] Harba, I. and Abdulridha, A. (2017). Finite Element Analysis of RC Tapered Beams under Cyclic Loading, Al-Nahrain Journal for Engineering Sciences, 20(2), pp. 378–396. https://nahje.com/index.php/main/article/view/117. [17] Abdulridha, A., Risan, H. and Harba, I. (2018). Numerical Analysis of Two-Way RC Slab with a Sawn Up Opening Strengthened by CFRP, International Journal of Civil Engineering and Technology, 9(8), pp. 1159-1167. [18] Skolnik, D., Lei, Y., Yu, E. and Wallace, J-W. (2006). Identification, model updating, and response prediction of an instrumented 15-story steel-frame building, Earthquake Spectra, 22(3). DOI: 10.1193 /1.2219487. [19] Abdulridha, A., Taki, Z. and Harba, I. (2018). Numerical Analysis of Reinforced Concrete Beam Strengthened by Cfrp Subjected to Monotonic Loading, International Journal of Civil Engineering and Technology, 9(10), pp. 894–904. https://iaeme.com/Home/article_id/IJCIET_09_10_091. [20] Harba, I., Abdulridha, A. and AL-Shaar, A. (2022). Numerical analysis of high-strength reinforcing steel with conventional strength in reinforced concrete beams under monotonic loading, Open Engineering, 12(1), pp. 817-833. DOI: 10.1515/eng-2022-0365. [21] Zhu, B. and Frangopol, D. (2013). Reliability assessment of ship structures using Bayesian updating, Engineering Structures, 56(7), pp. 1836-1847. DOI: 10.1016/j.engstruct.2013.07.024.

294

Made with FlippingBook - professional solution for displaying marketing and sales documents online