PSI - Issue 65
Anvar Chanyshev et al. / Procedia Structural Integrity 65 (2024) 56–65 Anvar Chanyshev / Structural Integrity Procedia 00 (2024) 000–000
59
4
4 4 4 y x x y 3
y x
y x
y x
2
11 22 L L L
1
2
3
4
12
1
2
3
4
x
(10)
4
4
4
1 2 3 4 ... 1 3
.
1 2 3 4
1 2 3
1 2 4
1 3 4
2 3 4
2 2
3
4
x y
x y
y
Comparing (9) with (10), we find that
11 23 12 13 a a a a a a a 2 11 33 13
2 a a a a a a a a a a 11 22 12 12 33 2 11 33 13 2 2
2
,
,
3 4 ...
1 2 1 3
13 23
1
2
3
4
2 11 33 13 a a a a a a a
2
22 33 a a a a a a 11 33
2
,
22 13 12 23
1 2 3 4
23
1 2 3
1 2 4
1 3 4
2 3 4
2
13
From the above formulas and properties of the roots of the fourth-degree algebraic equation, it follows that the roots 1 2 3 4 , , , of the following characteristic equation are:
2 a a a a a a a 11 22 12 12 33 13 23 2 2
2
11 23 a a a a
22 13 a a a a
22 33 a a a a a a 11 33
.
(11)
4
3
2
2
2
0
12 13
12 23
23
2
2
2
2
11 33 a a a
11 33 a a a
11 33 a a a
13
13
13
13
x u and y u we have
After applying the operator (9) to the functions
y x
y x
y x
(12)
0. u
1
2
3
4
x
y
y x
y x
in (12) as w . Based on (12), we
Let us denote the inner expression
u
2
3
4
x
y
obtain the following differential equation for the function w :
u x
u y
1
0
.
(13)
The solution to this equation is the following function: 1 1 / , w f x y
(14)
where 1 f is an arbitrary function of one variable. Verification yields that . Then, based on (14) and the definition of the function w , we obtain a differential equation of the following nature: 1 1 1 1 1/ 0 f f
y x
y x
y
1 w f x
u
0
2
3
4
.
x
y
1
y x
u as function g , we get a differential equation for it:
Denoting the expression
3
4
x
y
Made with FlippingBook Digital Publishing Software