PSI - Issue 65
Anvar Chanyshev et al. / Procedia Structural Integrity 65 (2024) 56–65 Anvar Chanyshev / Structural Integrity Procedia 00 (2024) 000–000
59
4
4          4 4 y x x y 3   
  
y x       
y x       
y x       
2   
11 22 L L L
1 
2 
3 
4 
   
   
12
1
2
3
4
x
(10)
4
4
4
1 2 3 4 ...     1 3
.
   
      
1 2 3 4   
1 2 3
1 2 4
1 3 4
2 3 4
2 2
3
4
x y
x y
y
 
 
Comparing (9) with (10), we find that
11 23 12 13 a a a a a a a   2 11 33 13
2 a a a a a a a a a a     11 22 12 12 33 2 11 33 13 2 2
2
   
   
,
,
3 4       ...
1 2     1 3
13 23
1
2
3
4
2 11 33 13 a a a a a a a  
2
22 33 a a a a a a   11 33
2
      
,
22 13 12 23
1 2 3 4    
23
1 2 3
1 2 4
1 3 4
2 3 4
2
13
From the above formulas and properties of the roots of the fourth-degree algebraic equation, it follows that the roots 1 2 3 4 , , ,     of the following characteristic equation are:
2 a a a a a a a    11 22 12 12 33 13 23 2 2
2
11 23 a a a a 
22 13 a a a a 
22 33 a a a a a a   11 33
.
(11)
4
3
2
2
2
0
12 13
12 23
23
2
2
2
2
11 33 a a a 
11 33 a a a 
11 33 a a a 
13
13
13
13
x u and y u we have
After applying the operator (9) to the functions
  
y x       
y x       
y x       
  
(12)
0. u 
1 
2 
3 
4 
x
y
  
y x       
y x       
  
in (12) as w . Based on (12), we
Let us denote the inner expression
u
2 
3 
4 
x
y
obtain the following differential equation for the function w :
u x
u y
 
1    
0
.
(13)
The solution to this equation is the following function:   1 1 / , w f x y   
(14)
where 1 f is an arbitrary function of one variable. Verification yields that      . Then, based on (14) and the definition of the function w , we obtain a differential equation of the following nature: 1 1 1 1 1/  0 f f 
 
   
y x       
y x       
  
y
1 w f x 
u
0
   
2 
3 
4 
.
x
y
1 
  
y x       
 
u  as function g , we get a differential equation for it:
Denoting the expression
3 
4 
x
y
Made with FlippingBook Digital Publishing Software