PSI - Issue 65

I.V. Kosarev et al. / Procedia Structural Integrity 65 (2024) 127–132 I.V. Kosarev, E.A. Korznikova, S.V. Dmitriev / Structural Integrity Procedia 00 (2024) 000–000

131

5

a function of amplitude instead of the absence of this dependence, as predicted by linear theory. Such discrepancies demonstrate an existing problem in the accuracy of the considered potentials in describing the amplitude-frequency characteristics of DNVM. Note that DNVMs are natural vibrational modes of the crystal lattice and they should be well reproduced by a reliable interatomic potential. As a solution of the question about the accuracy of the considered potentials, in future works it is proposed to supplement the given results with calculations of the frequency responses of DNVM from first principles, Rekhviashvili and Kunizhev (2017), Rekhviashvili et al. (2009), and Rekhviashvili (2008).

Acknowledgements

I.V.K. and S.V.D. thank the financial support provided by the Russian Science Foundation, grant No. 24-11 00139 (simulations, manuscript writing). The work of E.A.K. was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the state assignment of the Youth Research Laboratory “Metals and Alloys under Extreme Impacts” of Ufa University of Science and Technology (No. 075-03-2024-123/1) (discussions, data curation).

References

Arblaster, J. W. (Ed.). (2018). Selected values of the crystallographic properties of elements. ASM International. Babicheva, R. I., Evazzade, I., Korznikova, E. A., Shepelev, I. A., Zhou, K., & Dmitriev, S. V. 2019. Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Computational Materials Science, 163, 248–255. 10.1016/j.commatsci.2019.03.022 Byggmästar, J., Nordlund, K., Djurabekova, F., (2020). Gaussian approximation potentials for body-centered-cubic transition metals. Physical Review Materials, 4(9), 093802. https://doi.org/10.1103/PhysRevMaterials.4.093802 Chechin, G. M., Sakhnenko, V. P., (1998). Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Physica D: Nonlinear Phenomena, 117(1-4), 43-76. https://doi.org/10.1016/S0167-2789(98)80012-2 Chechin, G., Ryabov, D., Shcherbinin, S., (2015). Nonlinear normal mode interactions in the SF6 molecule studied with the aid of density functional theory. Physical Review E, 92(1), 012907. https://doi.org/10.1103/PhysRevE.92.012907 Chechin, G., Ryabov, D., (2023). Exact solutions of nonlinear dynamical equations for large-amplitude atomic vibrations in arbitrary monoatomic chains with fixed ends. Communications in Nonlinear Science and Numerical Simulation, 120, 107176. https://doi.org/10.1016/j.cnsns.2023.107176 Dmitriev, S. V., Kistanov, A. A., Kosarev, I. V., Scherbinin, S. A., Shapeev, A. V., (2024). Construction of Machine Learning Interatomic Potentials for Metals. Russian Physics Journal, 1-6. https://doi.org/10.1007/s11182-024-03261-7 Evarestov, R. A., Kitaev, Y. E., (2016). New insight on cubic–tetragonal–monoclinic phase transitions in ZrO2: ab initio study and symmetry analysis. Journal of Applied Crystallography, 49(5), 1572-1578. https://doi.org/10.1107/S1600576716011547 Ghosh, S., Sotskov, V., Shapeev, A. V., Neugebauer, J., Körmann, F., (2022). Short-range order and phase stability of CrCoNi explored with machine learning potentials. Physical Review Materials, 6(11), 113804. https://doi.org/10.1103/PhysRevMaterials.6.113804 Guvenc, M.A., Bilgic, H.H., Mistikoglu, S., 2023. Identification of chatter vibrations and active vibration control by using the sliding mode controller on dry turning of titanium alloy (Ti6Al4V). Facta Universitatis, Series: Mechanical Engineering, 21 (2), 307 – 322. https://doi.org/10.22190/FUME210728067G Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., Srolovitz, D. J., (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328-3335. https://doi.org/10.1063/1.1555275 He, J.-H., Yang, Q., He, C.-H., Alsolami, A.A., 2023. Pull-down instability of the quadratic nonlinear oscillators. Facta Universitatis, Series: Mechanical Engineering, 21 (2), 191 – 200. https://doi.org/10.22190/FUME230114007H Kawecka, E., Perec, A., Radomska-Zalas A., 2024. Use of the simple multicriteria decision-making (MCDM) method for optimization of the high-alloy steel cutting process by the abrasive water. Spectrum of Mechanical Engineering and Operational Research, 1(1), 111-120. https://doi.org/10.31181/smeor11202411 Kosarev, I. V., Shcherbinin, S. A., Kistanov, A. A., Babicheva, R. I., Korznikova, E. A., Dmitriev, S. V., (2024). An approach to evaluate the accuracy of interatomic potentials as applied to tungsten. Computational Materials Science, 231, 112597. https://doi.org/10.1016/j.commatsci.2023.112597 Lee, B. J., Baskes, M. I., Kim, H., Cho, Y. K., (2001). Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Physical Review B, 64(18), 184102. https://doi.org/10.1103/PhysRevB.64.184102 Mortazavi, B., Zhuang, X., Rabczuk, T., Shapeev, A. V., (2023). Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials. Materials Horizons, 10(6), 1956-1968. https://doi.org/10.1039/D3MH00125C Olsson, P. A., (2009). Semi-empirical atomistic study of point defect properties in BCC transition metals. Computational Materials Science, 47(1), 135-145. https://doi.org/10.1016/j.commatsci.2009.06.025 Plimpton, S., (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039

Made with FlippingBook Digital Publishing Software