Issue 64

M. A. Kenanda et alii, Frattura ed Integrità Strutturale, 64 (2023) 266-282; DOI: 10.3221/IGF-ESIS.64.18

[40] Ebrahimi, F. and Jafari, A. (2016). A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering, 2016. DOI: 10.1155/2016/9561504. [41] Wang, Y. Q. (2018). Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronautica, 143, pp. 263-271. DOI: 10.1016/j.actaastro.2017.12.004. [42] Fu, T., Wu, X., Xiao, Z. and Chen, Z. (2020). Thermoacoustic response of porous FGM cylindrical shell surround by elastic foundation subjected to nonlinear thermal loading. Thin-Walled Structures, 156, pp. 106996. DOI: 10.1016/j.tws.2020.106996. [43] Saidi, H. and Sahla, M. (2019). Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium. Frattura ed Integrità Strutturale, 13(50), pp. 286-299. DOI: 10.3221/IGF-ESIS.50.24. [44] Thanh, C. L., Tran, L. V., Bui, T. Q., Nguyen, H. X. and Abdel-Wahab, M. (2019). Isogeometric analysis for size dependent nonlinear thermal stability of porous FG microplates. Composite Structures, 221, pp. 110838. DOI: 10.1016/j.compstruct.2019.04.010. [45] Srinivas, S., Rao, C. J. and Rao, A. K. (1970). An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. Journal of sound and vibration, 12(2), pp. 187-199. DOI: 10.1016/0022-460X(70)90089-1. [46] Mechab, B., Mechab, I. and Benaissa, S. (2012). Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading. Composites Part B: Engineering, 43(3), pp. 1453-1458. DOI: 10.1016/j.compositesb.2011.11.037. [47] Hosseini-Hashemi, S., Fadaee, M. O. H. A. M. M. A. D. and Atashipour, S. R. (2011). A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. International Journal of Mechanical Sciences, 53(1), pp. 11-22. DOI: 10.1016/j.ijmecsci.2010.10.002. [48] Belabed, Z., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. and Bég, O. A. (2014). An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Composites Part B: Engineering, 60, pp. 274-283. DOI: 10.1016/j.compositesb.2013.12.057.

A PPENDIX A

 The stress resultants N , M , S , and Q are defined by:

 h 2 -h 2

x y xy N ,N ,N =

σ , σ , τ

dz

(A1)

x y xy

 h 2 -h 2

z z N = g'(z) σ dz

(A2)

 h 2 -h 2

x y xy M ,M ,M =

σ , σ , τ

zdz

(A3)

x y xy

 h 2 -h 2

x y xy S ,S ,S =

x y xy σ , σ , τ f(z)dz

(A4)

 h 2 -h 2

xz yz Q ,Q =

xz yz τ , τ g(z)dz

(A5)

 The moments of inertia

ij (D ) are defined as:

h 2

2

2

2

ρ  -h 2 i D = (z) 1, z, z ,f(z), zf(z),(f(z)) , g(z),(g(z)) dz i = 1,8

(A6)

281

Made with FlippingBook - Online Brochure Maker