Issue 64
M. A. Kenanda et alii, Frattura ed Integrità Strutturale, 64 (2023) 266-282; DOI: 10.3221/IGF-ESIS.64.18
2
3
N
u
w
2
N
θ
0 + =D -D +D x y t t x w + =D -D +D x y t t y xy N N 1 2 2 2 2 3 0 0 1 2 2 2 xy x y 0 v
x
δ u :
4
0
2
t
2
θ
y
δ v :
4
0
2
t
2
2
2
2
3
3
xy M M M
w
u
v
y
x
0 D D +
0
0
+2
+ =
+
δ w :
1
2
t x t y 2 2
x y
0
x
y
t
2
2
2
3
θ
4
4
3
2
w
w
θ
θ
y
x
z
D
D
D
0
0
-
+
+
+
+
(11)
3
5
7
t x t y 2 2
t x t y 2 2 2 2
2
t
2
3
2
x xy S S x y S S x y
u
w
θ
xy
x
0 D D -
D
0
+ -Q =
+
x δ : θ
xz
4
5
6
t
t x 2
t
2
2
2
θ
2
3
w
v
y
y
0 D D -
D
0
+ -Q =
+
y δ : θ
yz
4
6
5
t
t y 2
t
2
2
2
2
xz Q Q
w
θ
yz
z
0 D D +
+ -N =
z δ : θ
z
7
8
x
y
2
2
t
t
ij ij ij N ,M ,S andQ ), and the moments of inertia
ij (D ) are defined in Appendix
where the moment, the stress resultants ( ij
A.
A NALYTICAL SOLUTION
A
ccording to Navier’s solution approach for simply supported FG plate, the analytical solutions of motion’s Eqns. (11) are expanded relying on double Fourier series:
cos λ x sin μ y e sin λ x cos μ y e sin λ x sin μ y e U cos λ x sin μ y e V sin λ x cos μ y e W sin λ x sin μ y e mn mn mn x mn y mn z mn
i ω t
0 u (x,y) v (x,y) w (x,y) θ (x,y) θ (x,y) θ (x,y) 0 0 x y
i ω t
i ω t
=
(12a)
i ω t
m n =1 =1
i ω t
i ω t
z
in which
λ =m π a ;
μ =n π b
(12b)
where ω is the natural frequency, (m, n) are the frequency mode numbers, mn U , mn V , mn W , x mn , y mn and z mn are coefficients must be determined. According to the Eqns. (11 and 12), the eigenvalue problem can be expressed in algebraic form as: 2 ij ij j j S - ω m Δ = 0 (i,j=1,6) (13a)
in which
272
Made with FlippingBook - Online Brochure Maker