Issue 64
F. Gugouch et alii, Frattura ed Integrità Strutturale, 64 (2023) 218-228; DOI: 10.3221/IGF-ESIS.64.14
The summation of the square of the residuals is:
2
3 a
n
n
P
i
2 E
uri
(4)
1 2 3 , , f a a a
1 2 a a e
P
i
i
1
1
u
3 ( ) a
i x e
We assume
3 0 a is fixed and we put
, we use the classical least squares for the linear model we find:
P
p
1 1 1 2 2 ( )( n n n uri uri i i i i u u n n i i x P P n x x
n
x
)
i
a a a 2 3 2
(5)
i
i
1
1
P
P
2 1 1 1 1 2 2 ( )( ( ) n n n n uri uri i i i i i i u u n n i i x x P P n x x
x
)
i
a a a 1 1 3
(6)
i
i
1
1
Then we set:
3 1 3 2 3 3 , , S a f a a a a a
(7)
This means:
n
n
n
n
n
n
n
P
P
P
P
2 ( )( ) ( )( uri uri uri uri i i i i x x x n x
x
)
i
n
P
Pu
Pu
Pu
Pu
2
uri
i
i
i
i
i
i
i
1
1
1
1
1
1
1
(8)
S a
x
3 ( )
(
(
))
i
n
n
n
n
Pu
2 ( i
2 ( i
2
2
i
1
n x
x
n x
x
)
)
i
i
i
i
i
i
1
1
1
1
Figure 7: Dimensionless pressure loss as a function of fraction of life
The optimization problem is now reduced to finding the minimum of S(a3). This can be done either using the Newton method [29], this gives a3=0.7713, we substitute the value of a3 in the value of a2 and a3 we get: a1=1.4838; a2= -0.4812; which allows to obtain the final form of the additional pressure loss function.
223
Made with FlippingBook - Online Brochure Maker