Issue 63

Z. Najat et alii, Frattura ed Integrità Strutturale, 63 (2023) 61-71; DOI: 10.3221/IGF-ESIS.63.06

[7] Zekriti, N., Rhanim, R., Majid, F., Lahlou, M., Ibrahim, M., Rhanim, H. (2020). Mode I stress intensity factors of printed and extruded specimens based on Digital Image Correlation method (DIC): case of ABS material, Procedia Structural Integrity, 28, pp. 1745–1754. DOI: 10.1016/J.PROSTR.2020.10.149. [8] Scetta, G., Euchler, E., Ju, J., Selles, N., Heuillet, P., Ciccotti, M., Creton, C. (2021). Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers, Macromolecules, 54(18), pp. 8726–8737. DOI: 10.1021/ACS.MACROMOL.1C00934/SUPPL_FILE/MA1C00934_SI_001.PDF. [9] Chen, X., Ye, Z., Xia, J.Y., Wang, J.X., Ji, B.H. (2020). Double-Probe Ultrasonic Detection Method for Cracks in Steel Structure, Applied Sciences 2020, 10(23), 8436. DOI: 10.3390/APP10238436. [10] Zhao, Y., Chen, J., Sun, J., Song, J., Ma, J., Liu, S., Zhu, Y. (2018). Applications of laser ultrasonic technique on nondestructive testing and evaluation of materials, MATEC Web of Conferences, 173, p. 02033. DOI: 10.1051/MATECCONF/201817302033. [11] Broberg, P. (2013). Surface crack detection in welds using thermography, NDT and E International, 57, pp. 69–73. DOI: 10.1016/j.ndteint.2013.03.008. [12] Rasband., S., W. (2012). ImageJ: Image processing and analysis in Java, Ascl, 1206.013. [13] Mahfuzur Rahman, Md., Saifullah, I., Kumar Ghosh, S. (2019). Detection and Measurements of Cracks in Axially Loaded Tension RC Members by Image Processing Technique, American Journal of Civil Engineering and Architecture, 7(2), pp. 115–120. DOI: 10.12691/ajcea-7-2-5. [14] Zawad, M., Shahriar, R., Zawad, M., Shahriar, F., Rahman, M. and Priyom, S. N. (2021). A Comparative Review of Image Processing Based Crack Detection Techniques on Civil Engineering Structures. Journal of Soft Computing in Civil Engineering, 5(3), 58-74. [15] Cinar, A.F., Barhli, S.M., Hollis, D., Flansbjer, M., Tomlinson, R.A., Marrow, T.J., Mostafavi, M. (2017). An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency, Opt Lasers Eng, 96, pp. 94–106. DOI: 10.1016/j.optlaseng.2017.04.010. [16] Sutton, M., Orteu, J., Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. [17] Chu, T.P., Sutton, M., Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H. (n.d.). Applications of digital-image correlation techniques to experimental mechanics, Researchgate.Net. DOI: 10.1007/BF02325092. [18] Helm, J. D., McNeill, S. R. and Sutton, M. A. (1996). Improved three-dimensional image correlation for surface displacement measurement. Optical Engineering, 35(7), 1911-1920. [19] Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F. and McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and vision computing, 1(3), 133-139. [20] Liu, M., Guo, J., Li, Z., Hui, C. Y. and Zehnder, A. T. (2019). Crack propagation in a PVA dual-crosslink hydrogel: Crack tip fields measured using digital image correlation. Mechanics of Materials, 138, 103158. Blaber, J., Adair, B., Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp Mech, 55(6), pp. 1105– 1122. DOI: 10.1007/S11340-015-0009-1. [21] Ali, M. B., Ab Ghani, A. F., DharMalingam, S. and Mahmud, J. (2016). Digital image correlation (DIC) technique in measuring strain using opensource platform Ncorr. Journal of Advanced Research in Applied Mechanics, 26(1), 10-21. [22] Pan, B., Asundi, A., Xie, H. and Gao, J. (2009). Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Optics and Lasers in Engineering, 47(7-8), 865-874. [23] Djouda, J. M., Bouaziz, M. A., Zouaoui, M., Rambaudon, M., Gardan, J., Recho, N. and Crépin, J. (2020). Experimental approach for microscale mechanical characterization of polymeric structured materials obtained by additive manufacturing. Polymer Testing, 89, 106634. [24] Marae Djouda, J., Bouaziz, M.A., Zouaoui, M., Rambaudon, M., Gardan, J., Recho, N., Crépin, J. (2020). Experimental approach for microscale mechanical characterization of polymeric structured materials obtained by additive manufacturing, Polym Test, 89. DOI: 10.1016/j.polymertesting.2020.106634. [25] Bouaziz, M. A., Marae ‐ Djouda, J., Zouaoui, M., Gardan, J. and Hild, F. (2021). Crack growth measurement and J ‐ integral evaluation of additively manufactured polymer using digital image correlation and FE modeling. Fatigue & Fracture of Engineering Materials & Structures, 44(5), 1318-1335. [26] Ruocci, G., Rospars, C., Moreau, G., Bisch, P., Erlicher, S., Delaplace, A., Henault, J.M. (2016). Digital Image Correlation and Noise-filtering Approach for the Cracking Assessment of Massive Reinforced Concrete Structures, Strain, 52(6), pp. 503–521. DOI: 10.1111/str.12192. [27] Boyat, A.K., Joshi, B.K. (2015). A Review Paper: Noise Models in Digital Image Processing, Signal Image Process, 6(2), pp. 63–75. DOI: 10.5121/sipij.2015.6206.

70

Made with FlippingBook flipbook maker