Issue 63
L. Nazarova et alii, Frattura ed Integrità Strutturale, 63 (2023) 13-25; DOI: 10.3221/IGF-ESIS.63.02
) σ x H f x ( , ( ),
) σ x H F x ( , ( )
(7)
xy
m
yy
y
( , ) ( , ) 0 , xx xy σ L y σ L y
where
x x x x
1 0
m
m f x
( )
.
m
m { σ x y
The set
( , )}
of solutions of system (1)–(3), (7) is discrete Green’s function for the boundary value problem:
1 m m m 2 ,...,
ij
σ x H F x ( , )
σ x H F x ( , ) ( )
( ),
xy
x
yy
y
) σ x H F x ( , ( ),
) σ x H F x ( , ( )
xy
y
yy
y
( , ) ( , ) 0 xx xy σ L y σ L y We represent the function ௫ as a sum m
2 1 m m
x F x
m m C f x
( )
( )
(8)
with unknown coefficients C m which are determined by the LS method from the condition of the cost function minimum
2
I m m 2 m
m
C σ x y σ x y dxdy min ( , ) ( , )
( C C , ...,
)
(9)
m
m
m
*
1
2
1
where
m σ x y
m m xx yy
( , ) (1 )(
ν σ σ
) / 3
.
A system of linear equations with respect to C m can be derived from (9)
m m 2 m
K C Q nm m n
(10)
1
*
m
n
n
σ x y σ x y dxdy n m m ( , ) ( , ) , , ...,
K
( , ) ( , ) σ x y σ x y dxdy Q ,
.
mn
n
1
2
I
I
Solution of (10) together with (8) gives the desired distribution of the shear stresses σ xy ( x , H )= F x ( x ) at the boundary of the extraction sub-panel. The red dashed line (Fig. 6) shows the exact distribution of σ xy ( x , H ) at b =7 m, and the blue solid line shows the result of the inverse problem solution using the described procedure—the reconstructed function F x ( x ) which clearly indicates the existence of a weak zone in the section 6 ≤ x ≤ 8.
18
Made with FlippingBook flipbook maker