Issue 63

L. A. Aboul-Nour et alii, Frattura ed Integrità Strutturale, 63 (2023) 134-152; DOI: 10.3221/IGF-ESIS.63.13

J. Eng. Sci., 5(2), pp. 1–11, DOI: 10.31185/ejuow.vol5.iss2.53. [4] Al-Azzawi, A.A., Abed, S.A. (2017). Investigation of the behavior of reinforced concrete hollow-core thick slabs, Comput. Concr., 19(5), pp. 567–577, DOI: 10.12989/cac.2017.19.5.567. [5] Al-Shaarbaf, I.A., Al-Azzawi, A.A., Abdulsattar, R. (2018). A state of the art review on hollow core slabs, ARPN J. Eng. Appl. Sci., 13(9), pp. 3240–5. [6] Hussein, Z.M., Ismail Khalil, W., Khalid Ahmed, H. (2018). Structural behavior of sustainable hollow core slabs reinforced with hybrid fibers, Journal of Engineering and Applied Sciences, 13(24), pp. 9328-9334. [7] Prakashan, L.V., George, J., Edayadiyil, J.B., George, J.M. (2016). Experimental Study on the Flexural Behavior of Hollow Core Concrete Slabs, Appl. Mech. Mater., 857, pp. 107–112, DOI: 10.4028/www.scientific.net/amm.857.107. [8] Li, S., Song, C. (2019). Mechanical performance test and analysis of prestressed lightweight aggregate concrete hollow slab, Adv. Struct. Eng., 22(8), pp. 1830–1844, DOI: 10.1177/1369433219825998. [9] Gul, A., Shahzada, K., Alam, B., Badrashi, Y.I., Khan, S.W., Khan, F.A., Ali, A., Rehman, Z.U. (2020). Experimental study on the structural behavior of cast in-situ hollow core concrete slabs, Civ. Eng. J., 6(10), pp. 1983–91, DOI: 10.28991/cej-2020-03091597. [10] Abed, A.A.A.-A. and S.A. (2016). Numerical analysis of reinforced concrete hollow-core slabs, ARPN Jour Nal Eng. Ing Appl. Sci., 11(181 9-66 08), pp. 15. [11] Mohamed, M.S., Thamboo, J.A., Jeyakaran, T. (2020). Experimental and numerical assessment of the flexural behaviour of semi-precast-reinforced concrete slabs, Adv. Struct. Eng., 23(9), pp. 1865–1879, DOI: 10.1177/1369433220904011. [12] Baran, E. (2015). Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs, Eng. Struct., 98, pp. 109–117, DOI: 10.1016/j.engstruct.2015.04.017. [13] Mas ė nas, J., Šalna, R., Juknevi č ius, L., Valivonis, J. (2021). Deflection analysis of layered slabs with plastic inserts, Materials (Basel)., 14(20), DOI: 10.3390/ma14206050. [14] Kankeri, P., Suriya Prakash, S., Pachalla, S.K.S. (2018). Experimental and Numerical Studies on Efficiency of Hybrid Overlay and Near Surface Mounted FRP Strengthening of Pre-cracked Hollow Core Slabs, Structures, 15, pp. 1–12, DOI: 10.1016/j.istruc.2018.05.003. [15] Nabil, A., Meleka, N., Heiza, K. (2017). Effects of Different Types of Concrete Toppings on the Behavior of Pphc Slabs, ERJ. Eng. Res. J., 40(4), pp. 331–339, DOI: 10.21608/erjm.2017.66359. [16] Torelli, G., Fernández, M.G., Lees, J.M. (2020). Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements, Constr. Build. Mater., 242, DOI: 10.1016/j.conbuildmat.2020.118040. [17] Balevi č ius, R., Mar č iukaitis, G. (2013). Linear and Non-linear Creep models for a multi-layered concrete composite, Arch. Civ. Mech. Eng., 13(4), pp. 472–490, DOI: 10.1016/j.acme.2013.04.002. [18] Marciukaitis, G., Juknevicius, L. (2010). Influence of the initial state of stress and strain on the cracking of shear section of layered reinforced concrete structures, 10th Int. Conf. Mod. Build. Mater. Struct. Tech., , pp. 713–9. [19] Pratama, M.M.A., Suhud, R.K., Puspitasari, P., Kusuma, F.I., Rahma Putra, A.B.N. (2019). Finite element analysis of the bending moment-curvature of the double-layered graded concrete beam, IOP Conf. Ser. Mater. Sci. Eng., 494(1), DOI: 10.1088/1757-899X/494/1/012064. [20] Brault, A., Lees, J.M. (2020). Wet casting of multiple mix horizontally layered concrete elements, Constr. Build. Mater., 247, DOI: 10.1016/j.conbuildmat.2020.118514. [21] AL-Farttoosi, H.K.A., Hussain, H.K., Abdulrazzaq, O.A. (2021). Flexural behavior of two-layer beams made with normal and lightweight concrete layers, Period. Eng. Nat. Sci., 9(2), pp. 1124–1140, DOI: 10.21533/pen.v9i2.1952. [22] Pratama, M.M.A., Aylie, H., Gan, B.S., Umniati, B.S., Risdanareni, P., Fauziyah, S. (2017). Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach, AIP Conf. Proc., 1887, DOI: 10.1063/1.5003512. [23] Gan, B.S., Aylie, H., Pratama, M.M.A. (2015). The behavior of graded concrete, an experimental study, Procedia Eng., 125, pp. 885–891, DOI: 10.1016/j.proeng.2015.11.076. [24] Pratama, M.M.A. (2016). An Experimental Study and Finite Element Approach to the Behavior of Graded Concrete, Thesis Master of Engineering at the Faculty, DOI: 10.13140/RG.2.1.4082.4568. [25] Abdillah Pratama, M.M., Umniati, B.S., Arumsari Mutiara Wulandari, B., Han, A.L., Sthenly Gan, B., Zhabrinna, Z. (2018). Modulus elasticity of the graded concrete, a preliminary research, MATEC Web Conf., 195, pp. 1–8, DOI: 10.1051/matecconf/201819501005. [26] Sulistyana., Purwanto., Widoanindyawatib, V., Pratama, M.M.A. (2014). The influence of compression applied during production to the compression strength of dry concrete: An experimental study., Procedia Eng., 95(Scescm), pp. 465– 72, DOI: 10.1016/j.proeng.2014.12.206.

151

Made with FlippingBook flipbook maker