PSI - Issue 62
Lorenzo Principi et al. / Procedia Structural Integrity 62 (2024) 89–96 Principi L. / Structural Integrity Procedia 00 (2019) 000 – 000
96 8
References
Alogdianakis, F., Dimitriou, L., Charmpis, D. C., 2022. Data-driven recognition and modelling of deterioration patterns in the US National Bridge Inventory: A genetic algorithm-artificial neural network framework. Advances in Engineering Software, 171, 103148. Asaithambi, S., 2017. “Why, how and when to scale your features.” Accessed October 13, 2023. https://medium.com/greyatom/why -how -and when-to-scale-your-features-4b30ab09db5e. Assaad, R., El-adaway, I. H., 2020a. Bridge infrastructure asset management system: Comparative computational machine learning approach for evaluating and predicting deck deterioration conditions. Journal of Infrastructure Systems, 26(3), 04020032. Assaad, R., El-Adaway, I., 2020b. Forecasting and modeling bridge deterioration using data mining analytics. In Construction Research Congress 2020 (pp. 125-134). Reston, VA: American Society of Civil Engineers. Berahas, A. S., M. Takáč. , 2020. “A robust multi -batch l- bfgs method for machine learning.” Optim. Methods Software 35 (1): 191– 219. https://doi.org/10.1080/10556788.2019.1658107. Bień, J., Salamak, M., 2020. Management of Bridge Structures – Challenges and Possibilities. Presented at the IABSE Symposium, Wroclaw 2020: Synergy of Culture and Civil Engineering – History and Chal-lenges, Wroclaw, Poland, pp. 8 – 31. https://doi.org/10.2749/wroclaw.2020.0002. Bottou, L., 2012. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade: Second Edition (pp. 421-436). Berlin, Heidelberg: Springer Berlin Heidelberg. Cattan, J., Mohammadi, J., 1997. Analysis of bridge condition rating data using neural networks. Computer‐Aided Civil and Infrastructure Engineering, 12(6), 419-429. Cawley, G. C., Talbot, N. L., 2010. On over-fitting in model selection and subsequent selection bias in performance evaluation. The Journal of Machine Learning Research, 11, 2079-2107. Chase, S. B., Adu-Gyamfi, Y., Aktan, A. E., Minaie, E., 2016. Synthesis of national and international methodologies used for bridge health indices. Chen, M., Mangalathu, S., Jeon, J. S., 2021. Bridge fragilities to network fragilities in seismic scenarios: An integrated approach. Engineering Structures, 237, 112212. Cortes, C., Mohri, M., Rostamizadeh, A., 2012. L2 regularization for learning kernels. arXiv preprint arXiv:1205.2653. Dongare, A. D., Kharde, R. R., Kachare, A. D., 2012. Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189-194. Elhag, T. M., Wang, Y. M., 2007. Risk assessment for bridge maintenance projects: Neural networks versus regression techniques. Journal of computing in civil engineering, 21(6), 402-409. Fan, W., Chen, Y., Li, J., Sun, Y., Feng, J., Hassanin, H., Sareh, P., 2021. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. In Structures (Vol. 33, pp. 3954-3963). Elsevier. Franchin, P., Lupoi, A., Noto, F., Tesfamariam, S., 2015. A Bayesian network model to assess seismic risk of reinforced concrete girder bridges. Guidelines on Risk Classification and Management, Safety Assessment and Monitoring of Existing Bridges. MIT, Italy, 2020 (In Italian). Heaton, J. (2008). Introduction to neural networks with Java. Heaton Research, Inc.. James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning (Vol. 112, p. 18). New York: springer. Karim, M.R., Zhang, Q., Alam, M.S., 2020. Application of machine learning in bridge engineering: A state-ofthe-art review. Keller, J. M., D. Liu, and D. B. Fogel., 2016. Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation. New York: Wiley. Liashchynskyi, P., 2019. Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint arXiv:1912.06059. Mangalathu, S.; Soleimani, F., Jeon, J.-S., 2017. Bridge classes for regional seismic risk assessment: Improving HAZUS models. Eng. Struct. 2017, 148, 755 – 766. Minnucci, L., Scozzese, F., Carbonari, S., Gara, F., Dall’Asta, A. , 2022. Innovative fragility-based method for failure mechanisms and damage extension analysis of bridges. Infrastructures, 7(9), 122. Müller, A. C., Guido, S., 2016. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.". Negnevitsky, M., 2005. Artificial intelligence: a guide to intelligent systems. Pearson education. Padgett, J. E., DesRoches, R., 2007. Bridge functionality relationships for improved seismic risk assessment of transportation networks. Earthquake Spectra, 23(1), 115-130. Pellegrino, C. Pipinato, A. Modena, C., 2011. A simplified management procedure for bridge network maintenance. Struct. Infrastruct. Eng., 7, 341 – 351. Piccolo, D., 2010. Statistica per le decisioni (Para. 2.3, pp. 35-38). Il mulino. (In Italian). Pinto, P. E., Franchin, P., 2010. Issues in the upgrade of Italian highway structures. Journal of Earthquake Engineering, 14(8), 1221-1252. Pregnolato, M., 2019. Bridge safety is not for granted — A novel approach to bridge management. Eng. Struct. 2019, 196, 109193. Santarsiero, G., Masi A., Picciano, V., Digrisolo, A., 2021. The Italian guidelines on risk classification and management of bridges: Applications and remarks on large scale risk assessments. Infrastructures, 6(8), 111. Scikit-Learn User Guide (Release 0.21.3). Accessed October 13, 2023. https://scikit-learn.org/0.21/_downloads/scikit-learn-docs.pdf Stone, M., 1974. Cross‐validatory choice and assessment of statistical predictions. Journal of the royal statistical society: Series B ( Methodological), 36(2), 111-133. Tubaldi, E., Scozzese, F., De Domenico, D., Dall'Asta, A., 2021. Effects of axial loads and higher order modes on the seismic response of tall bridge piers. Engineering Structures, 247, 113134. Valenzuela, S. De Solminihac, H. Echaveguren, T., 2009. Proposal of an Integrated Index for Prioritization of Bridge Maintenance. J.Bridge Eng. Whelan, M.J. Cavalline, T.L. Alar, A. Lane, K., 2019. Guidelines for Prioritization of Bridge Replacement, Rehabilitation, and Preservation Projects; University of North Carolina at Charlotte: Charlotte, NC, USA. Xia, Y., Lei, X., Wang, P., Sun, L., 2021. Artificial intelligence based structural assessment for regional short-and medium-span concrete beam bridges with inspection information. Remote Sensing, 13(18), 3687. Xie, Y., Ebad Sichani, M., Padgett, J. E., DesRoches, R., 2020. The promise of implementing machine learning in earthquake engineering: A state of-the-art review. Earthquake Spectra, 36(4), 1769-1801.
Made with FlippingBook Ebook Creator