PSI - Issue 61
Enes Günay et al. / Procedia Structural Integrity 61 (2024) 34–41 E. Gu¨nay et al. / Structural Integrity Procedia 00 (2024) 000–000
41
8
Chamani, H.R., Ayatollahi, M.R., 2016. The e ff ect of berkovich tip orientations on friction coe ffi cient in nanoscratch testing of metals. Tribology International 103, 25–36. doi: 10.1016/j.triboint.2016.06.036 . Chamani, H.R., Ayatollahi, M.R., 2018. Prediction of friction coe ffi cients in nanoscratch testing of metals based on material flow lines. Theoretical and Applied Fracture Mechanics 94, 186–196. doi: 10.1016/j.tafmec.2018.02.004 . Gao, Y., Ruestes, C.J., Urbassek, H.M., 2014. Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions. Computational Materials Science 90, 232–240. doi: 10.1016/j.commatsci.2014.04.027 . Gu¨nay, E., Bulut, O., Yalc¸inkaya, T., 2023. Examination of intrinsic and extrinsic size e ff ect in thin specimens through crystal plasticity frameworks. Materials Research Proceedings 28, 1471–1480. doi: 10.21741/9781644902479-159 . Han, C.S., Gao, H., Huang, Y., Nix, W.D., 2005. Mechanism-based strain gradient crystal plasticity—i. theory. Journal of the Mechanics and Physics of Solids 53, 1188–1203. doi: 10.1016/j.jmps.2004.08.008 . Junge, T., Molinari, J.F., 2014. Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium. International Journal of Plasticity 53, 90–106. doi: 10.1016/j.ijplas.2013.07.005 . Kareer, A., Hou, X., Jennett, N., Hainsworth, S., 2016a. The existence of a lateral size e ff ect and the relationship between indentation and scratch hardness in copper. Philosophical Magazine 96, 3396–3413. doi: 10.1080/14786435.2016.1146828 . Kareer, A., Hou, X., Jennett, N., Hainsworth, S., 2016b. The interaction between lateral size e ff ect and grain size when scratching polycrystalline copper using a berkovich indenter. Philosophical Magazine 96, 3414–3429. doi: 10.1080/14786435.2016.1240881 . Kareer, A., Tarleton, E., Hardie, C., Hainsworth, S.V., Wilkinson, A.J., 2020. Scratching the surface: Elastic rotations beneath nanoscratch and nanoindentation tests. Acta Materialia 200, 116–126. doi: 10.1016/j.actamat.2020.08.051 . Kim, G.Y., Ni, J., Koc¸, M., 2006. Modeling of the size e ff ects on the behavior of metals in microscale deformation processes. Journal of Manufacturing Science and Engineering 129, 470–476. doi: 10.1115/1.2714582 . Koch, T., Evaristo, M., Pauschitz, A., Roy, M., Cavaleiro, A., 2009. Nanoindentation and nanoscratch behaviour of reactive sputtered deposited w–s–c film. Thin Solid Films 518, 185–193. doi: 10.1016/j.tsf.2009.06.027 . Lee, K., Marimuthu, K.P., Kim, C.L., Lee, H., 2018. Scratch-tip-size e ff ect and change of friction coe ffi cient in nano / micro scratch tests using xfem. Tribology International 120, 398–410. doi: 10.1016/j.triboint.2018.01.003 . Mughrabi, H., 2016. The α -factor in the taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: Dependence on slip mode, dislocation arrangement and density. Current Opinion in Solid State and Materials Science 20, 411–420. doi: 10.1016/j.cossms.2016.07. 001 . Nazemian, M., Chamani, M., 2019. Experimental investigation and finite element simulation of the e ff ect of surface roughness on nanoscratch testing. Journal of Mechanical Science and Technology 33, 2331–2338. doi: 10.1007/s12206-019-0432-9 . Noreyan, A., Amar, J., 2008. Molecular dynamics simulations of nanoscratching of 3c sic. Wear 265, 956–962. doi: 10.1016/j.wear.2008.02. 020 . Quey, R., Dawson, P., Barbe, F., 2011. Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering 200, 1729–1745. doi: 10.1016/j.cma.2011.01.002 . Subhash, G., Zhang, W., 2002. Investigation of the overall friction coe ffi cient in single-pass scratch test. Wear 252, 123–134. doi: 10.1016/ S0043-1648(01)00852-3 . Wang, X., Xu, P., Han, R., Ren, J., Li, L., Han, N., Xing, F., Zhu, J., 2019a. A review on the mechanical properties for thin film and block structure characterised by using nanoscratch test. Nanotechnology Reviews 8, 628–644. doi: 10.1515/ntrev-2019-0055 . Wang, Z., Zhang, J., Lu, J., 2022. E ff ects of crystallographic orientations and grain boundaries on nanoscratching behaviour of unique bi-crystal cu. Wear 498-499, 204313. doi: 10.1016/j.wear.2022.204313 . Wang, Z., Zhang, J., Xu, Z., Zhang, J., ul Hassan, H., Li, G., Zhang, H., Hartmaier, A., Fang, F., Yan, Y., et al., 2019b. Crystal plasticity finite element modeling and simulation of diamond cutting of polycrystalline copper. Journal of Manufacturing Processes 38, 187–195. doi: 10. 1016/j.jmapro.2019.01.007 . Yalc¸inkaya, T., O¨ zdemir, ˙I., Simonovski, I., 2018. Micromechanical modeling of intrinsic and specimen size e ff ects in microforming. International Journal of Material Forming 11, 729–741. doi: 10.1007/s12289-017-1390-3 . Yalc¸inkaya, T., Tandog˘an, ˙I.T., O¨ zdemir, ˙I., 2021. Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity. International Journal of Plasticity 147, 103123. doi: 10.1016/j.ijplas.2021.103123 . Yalc¸inkaya, T., Brekelmans, W., Geers, M., 2011. Deformation patterning driven by rate dependent non-convex strain gradient plasticity. Journal of the Mechanics and Physics of Solids 59, 1–17. doi: https://doi.org/10.1016/j.jmps.2010.10.002 . Zhang, G., Volkert, C., Schwaiger, R., Wellner, P., Arzt, E., Kraft, O., 2006. Length-scale-controlled fatigue mechanisms in thin copper films. Acta Materialia 54, 3127–3139. doi: 10.1016/j.actamat.2006.03.013 .
Made with FlippingBook Digital Publishing Software