PSI - Issue 61
Lívia Mendonça Nogueira et al. / Procedia Structural Integrity 61 (2024) 122–129 L. M. Nogueira et al. / Structural Integrity Procedia 00 (2024) 000–000
129
8
Benveniste, Y., 1987. A new approach to the application of mori-tanaka’s theory in composite materials. Mechanics of materials 6, 147–157. Carter, D.R., Hayes, W.C., 1977. The compressive behavior of bone as a two-phase porous structure. JBJS 59, 954–962. Cowin, S., 2013. Continuum mechanics of anisotropic materials. Springer Science & Business Media. Cowin, S.C., 1986. Wol ff ’s law of trabecular architecture at remodeling equilibrium. Journal of Biomechanical Engineering 108, 83–88. Dormieux, L., Kondo, D., Ulm, F.J., 2006. Microporomechanics. John Wiley & Sons. Dormieux, L., Molinari, A., Kondo, D., 2002. Micromechanical approach to the behavior of poroelastic materials. Journal of the Mechanics and Physics of Solids 50, 2203–2231. Doube, M., Kłosowski, M.M., Arganda-Carreras, I., Cordelie`res, F.P., Dougherty, R.P., Jackson, J.S., Schmid, B., Hutchinson, J.R., Shefelbine, S.J., 2010. Bonej: free and extensible bone image analysis in imagej. Bone 47, 1076–1079. Drach, B., Drach, A., Tsukrov, I., 2013. Characterization and statistical modeling of irregular porosity in carbon / carbon composites based on x-ray microtomography data. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift fu¨r Angewandte Mathematik und Mechanik 93, 346–366. Dunant, C.F., Bary, B., Giorla, A.B., Pe´niguel, C., Sanahuja, J., Toulemonde, C., Tran, A.B., Willot, F., Yvonnet, J., 2013. A critical comparison of several numerical methods for computing e ff ective properties of highly heterogeneous materials. Advances in Engineering Software 58, 1–12. Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences 241, 376–396. Gibson, L., 1985. The mechanical behaviour of cancellous bone. Journal of biomechanics 18, 317–328. Giraud, A., Huynh, Q.V., Hoxha, D., Kondo, D., 2007. Application of results on eshelby tensor to the determination of e ff ective poroelastic properties of anisotropic rocks-like composites. International journal of solids and structures 44, 3756–3772. Harrigan, T., Mann, R., 1984. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. Journal of Materials Science 19, 761–767. Hosford, W.F., 2010. Mechanical Behavior of Materials. Cambridge University Press. Kahl, W.A., Dilissen, N., Hidas, K., Garrido, C.J., Lo´pes-Sa´nchez, V., Roma´n-Alpiste, M., 2017. 3-D microstructure of olivine in complex geological materials reconstructed by correlative X-ray-CT and EBSD analyses. Journal of Microscopy 268, 193–207. Ketcham, R.A., 2005. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. Journal of Structural Geology 27, 1217–1228. Lee, D., 2018. Local anisotropy analysis based on the mori-tanaka model for multiphase composites with fiber length and orientation distributions. Composites Part B: Engineering 148, 227–234. Meng, C., Heltsley, W., Pollard, D.D., 2012. Evaluation of the eshelby solution for the ellipsoidal inclusion and heterogeneity. Computers & Geosciences 40, 40–48. Moreno, R., Borga, M., Smedby, O., 2014. Techniques for computing fabric tensors: A review. Lecture Notes in Computer Science 8579, 271–292. Ortega, J.A., Ulm, F.J., Abousleiman, Y., 2010. The e ff ect of particle shape and grain-scale properties of shale: A micromechanics approach. International Journal for Numerical and Analytical Methods in Geomechanics 34, 1124–1156. Parnell, W.J., 2016. The eshelby, hill, moment and concentration tensors for ellipsoidal inhomogeneities in the newtonian potential problem and linear elastostatics. Journal of Elasticity 125, 231–294. Qu, J., Cherkaoui, M., 2006. Fundamentals of Micromechanics of Solids. volume 735. Wiley Online Library. Suquet, P., 2014. Continuum micromechanics. volume 377. Springer. Torquato, S., Haslach Jr, H., 2002. Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. 55, B62–B63. Underwood, E.E., 1973. Quantitative stereology for microstructural analysis. Microstructural Analysis: Tools and Techniques , 35–66. Wang, P., Cai, M., Ren, F., 2018. Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical brazilian tests. Tunnelling and Underground Space Technology 73, 139–153. Whitehouse, W., 1974. The quantitative morphology of anisotropic trabecular bone. Journal of microscopy 101, 153–168.
Made with FlippingBook Digital Publishing Software