PSI - Issue 61

Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2023) 000 – 000 Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 61 (2024) 62–70

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of IWPDF 2023 Chairman Abstract To accurately predict the ductile rupture or failure using uncoupled rupture models for a given material, specific model parameters are required. These parameters are difficult to determine in a direct approach from experiments and need to be estimated using a hybrid experimental and numerical analysis, which accuracy relies on the quality of the anisotropy and hardening model calibration. In this study, material model parameters are estimated for AA6016-T4 and AA5182-O thin sheets. The methodology to determine material parameters of a combination of Swift-Voce hardening law and Yld2004-18p yield criterion is based on inverse identification over a full database made of quasi-homogeneous tests and specific rupture tests. The experimental data are obtained from sheet metal samples in the form of either stress-strain curves or load-displacement curves and local strain evolution measured by digital image correlation. To validate the simulation results, three additional tests on notched specimen are considered. The failure model parameters for a shear modified uncoupled Lou’s rupture criterion are then determined using an average value of the triaxiality ratio and the Lode parameter at the material point of maximum equivalent plastic strain. The final aim of this study is the numerical prediction of the strength of a clinched joint of dissimilar AA6016-T4/AA5182-O sheets and the occurrence of rupture is numerically investigated at different stages. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of IWPDF 2023 Keywords: Material model calibration; Finite element analysis; Rupture tests; Sheet metal; Clinching 3rd International Workshop on Plasticity, Damage and Fracture of Engineering Materials (IWPDF 2023) Integrated model calibration for anisotropy, hardening and rupture - Application to the clinching process Abhishek Kumar * , Ahmed Kacem and Sandrine Thuillier Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France

* Corresponding author. Tel.: +33 297 874 500 E-mail address: abhishek.kumar2@univ-ubs.fr

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of IWPDF 2023

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of IWPDF 2023 Chairman 10.1016/j.prostr.2024.06.010

Made with FlippingBook Digital Publishing Software