PSI - Issue 61
Yogesh Kumar et al. / Procedia Structural Integrity 61 (2024) 322–330 Y. Kumar et al., / Structural Integrity Procedia 00 (2019) 000 – 000
329
8
3. The quasi-static compression model showed good agreement with the experimentally obtained stress strain response of the 8 ply sample. The stiffness of the sample was compared with the simulation results with a 7.8 % error. Acknowledgements This work is supported by NSERC Alliance project ALLRP 560447-2020. References Aoki, R., Higuchi, R., Yokozeki, T., Aoki, K., Uchiyama, S., Ogasawara, T., 2021. Damage-mechanics mesoscale modeling of composite laminates considering diffuse and discrete ply damages: Effects of ply thickness. Composite Structures 277. Aoki, R., Higuchi, R., Yokozeki, T., Aoki, K., Uchiyama, S., Ogasawara, T., 2022. Effects of ply thickness and 0°-layer ratio on failure mechanism of open-hole and filled-hole tensile tests of thin-ply composite laminates. Composite Structures 280. Arteiro, A., Furtado, C., Catalanotti, G., Linde, P., Camanho, P.P., 2020. Thin-ply polymer composite materials: A review. Composites Part A: Applied Science and Manufacturing 132. ASTM D5528-01, 2014. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites [WWW Document]. American Standard of Testing Methods. URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Mode+I+Interlaminar+Fracture+Toughne ss+of+Unidirectional+Fiber-Reinforced+Polymer+Matrix+Composites#2 (accessed 3.5.24). Benzeggagh, M.L., Kenane, M., 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology 56, 439 – 449. Caminero, M.A., García-Moreno, I., Rodríguez, G.P., 2018. Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates. Polymer Testing 66, 360 – 370. Chang, F., Chang, K., 1987. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. Journal of Composite Materials 21, 834 – 855. Cugnoni, J., Amacher, R., Kohler, S., Brunner, J., Kramer, E., Dransfeld, C., Smith, W., Scobbie, K., Sorensen, L., Botsis, J., 2018. Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance. Composites Science and Technology 168, 467 – 477. D’haen, J.J.A., May, M., Boegle, C., Hiermaier , S., 2022. Damage Evolution Analysis on Compression-Loaded Multidirectional Carbon Fiber Laminates Using Ex-Situ CT Scans. Journal of Composites Science 2022, Vol. 6, Page 63 6, 63. Guo, J., Zhang, Ye, Zhou, G., Wen, H., Wen, W., zhang, H., Cui, H., Zhang, Yifan, 2023. A transverse failure criterion for unidirectional composites based on the Puck failure surface theory. Composites Science and Technology 242, 110192. Hallquist, J.O., (LSTC)., L.S.T.C., 2018. LS- DYNA Keyword User ’ S Manual Volume II: Materi al Models. Hartung, D., Wiedemann, M., 2013. Experimental Determination of Interlaminar Material Properties of Carbon Fiber Composites 167 – 177. Harussani, M.M., Sapuan, S.M., Nadeem, G., Rafin, T., Kirubaanand, W., 2022. Recent applications of carbon-based composites in defence industry: A review. Defence Technology 18, 1281 – 1300. Hu, Y., Han, G., Cheng, F., Hu, X., 2023. Thickness effect on flexural strengths of laminar carbon fibre composites. Thin-Walled Structures 186, 110690. Kumar, Y., Rezasefat, M., Amico, S.C., Manes, A., Dolez, P.I., Hogan, J.D., 2024. Comparison of two progressive damage models for predicting low-velocity impact behavior of woven composites. Thin-Walled Structures 197. Kumar, Y., Rezasefat, M., Hogan, J.D., 2023. Axial crushing of circular thin-walled specimens made of CFRP using progressive failure model ( MAT54 ) in LS-Dyna. Materials Today: Proceedings. Li, X., Yuan, Y., Zhang, Z., 2023. Gradient ply thickness design for enhanced low-velocity impact resistance in ultra-thin ply composite. Extreme Mechanics Letters 63, 102054. Liu, H., Brooks, R.A., Hall, Z.E.C., Liu, J., Crocker, J.W.M., Joesbury, A.M., Harper, L.T., Blackman, B.R.K., Kinloch, A.J., Dear, J.P., 2022. Experimental and numerical investigations on the impact behaviour of pristine and patch-repaired composite laminates. Philosophical Transactions of the Royal Society A 380. Liu, H., Liu, J., Hall, Z.E.C., Brooks, R.A., Crocker, J.W.M., Joesbury, A.M., Harper, L.T., Blackman, B.R.K., Kinloch, A.J., Dear, J.P., 2023. Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates. Composites Science and Technology 233, 109917. May, M., Ledford, N., Isakov, M., Hahn, P., Paul, H., Nagasawa, S., 2020. The effect of strain rate on the orientation of the fracture plane in a unidirectional polymer matrix composite under transverse compression loading. Nejad, A.F., Salim, M.Y. Bin, Koloor, S.S.R., Petrik, S., Yahya, M.Y., Hassan, S.A., Shah, M.K.M., 2021. Hybrid and Synthetic FRP Composites under Different Strain Rates: A Review. Polymers 2021, Vol. 13, Page 3400 13, 3400. Nikbakt, S., Kamarian, S., Shakeri, M., 2018. A review on optimization of composite structures Part I: Laminated composites. Composite Structures 195, 158 – 185. Ou, Y., Zhu, D., Zhang, H., Yao, Y., Mobasher, B., Huang, L., 2016. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures. Composites Part B: Engineering 95, 123 – 136. Perry, J.I., Walley, S.M., 2022. Measuring the Effect of Strain Rate on Deformation and Damage in Fibre-Reinforced Composites: A Review. Journal of Dynamic Behavior of Materials. Pinho, S.T., Robinson, P., Iannucci, L., 2006. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Composites Science and Technology 66, 2069 – 2079.
Made with FlippingBook Digital Publishing Software