Issue 61

E. Entezari et alii, Frattura ed Integrità Strutturale, 61 (2022) 20-45; DOI: 10.3221/IGF-ESIS.61.02

Interact., pp. 449-466. [94] Traidia, A., Alfano, M., Lubineau, G., Duval, S., Sherik, A. (2012). An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines, Int. J. Hydrogen Energy, 37(21), pp. 16214-16230. [95] Kittel, J., Ropital, F., Pellier, J. (2008). Effect of membrane thickness on hydrogen permeation in steels during wet hydrogen sulfide exposure, Corrosion, 64(10), pp. 788-799. [96] Kharin, V., Toribio, J. (2005).Effect of residual stress profile on hydrogen embrittlement susceptibility of prestressing steel. Anales de Mecánica de la Fractura, vol. 22, Citeseer, pp. 464-469. [97] Jack, T.A., Pourazizi, R., Ohaeri, E., Szpunar, J., Zhang, J., Qu, J. (2020). Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel, Int. J. Hydrogen Energy, 45(35), pp. 17671-17684. [98] Javadi, Y., Sweeney, N.E., Mohseni, E., MacLeod, C.N., Lines, D., Vasilev, M., Qiu, Z., Mineo, C., Pierce, S.G., Gachagan, A. (2021). Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing, J. Manuf. Process., 63, pp. 80-87. [99] Zapffe, C.A., Sims, C.E. (1941). Hydrogen embrittlement, internal stress and defects in steel, Trans. AIME, 145(1941), pp. 225-271. [100] Oriani, R.A. (1972). A mechanistic theory of hydrogen embrittlement of steels, Berichte Der Bunsengesellschaft Für Phys. Chemie, 76(8), pp. 848-857. [101] Lynch, S. (2012). Hydrogen embrittlement phenomena and mechanisms, Corros. Rev., 30(3-4), pp. 105-123. [102] Beachem, C.D. (1972). A new model for hydrogen-assisted cracking (hydrogen "embrittlement"), Metall. Mater. Trans. B, 3(2), pp. 441-455. [103] Robertson, I.M., Sofronis, P., Nagao, A., Martin, M.L., Wang, S., Gross, D.W., Nygren, K.E. (2015). Hydrogen embrittlement understood, Metall. Mater. Trans. B, 46(3), pp. 1085-1103. [104] Huang, C. (2020). Numerical Modeling of Hydrogen Embrittlement. [105] Sofronis, P., Liang, Y., Aravas, N. (2001). Hydrogen induced shear localization of the plastic flow in metals and alloys, Eur. J. Mech., 20(6), pp. 857-872. [106] Liang, Y., Sofronis, P., Aravas, N. (2003). On the effect of hydrogen on plastic instabilities in metals, Acta Mater., 51(9), pp. 2717-2730. [107] Gerberich, W.W. (1974). Effect of hydrogen on high-strength and martensitic steels, Hydrog. Met., pp. 115-147. [108] Gerberich, W.W., Chen, S. (1990).Environment-induced cracking of metals, fundamental processes: micromechanics. Proceedings of the First International Conference on Environment-Induced Cracking of Metals,(Houston, TX: NACE, 1989), pp. 167-187. [109] González-Velázquez, J.L. (2020). A Practical Approach to Fracture Mechanics, Elsevier. [110] Diniz, D., Silva, E., Carrasco, J., Barbosa, J., Silva, A. (2014). Effect of reversible hydrogen trapping on crack propagation in the API 5CT P110 Steel-a numerical simulation, Int. J. Multiphys., 8(3), pp. 313-324. [111] McNabb, A., Foster, P.K. (1963). A new analysis of diffusion of hydrogen in iron and ferritic steels, Trans. Metall. Soc. AIME, 227(3), pp. 618. [112] Balueva, A. (2014). Modeling of hydrogen embrittlement cracking in pipelines under high pressures, Procedia Mater. Sci., 3, pp. 1310-1315. [113] Traidia, A., El-Sherik, A.M., Duval, S., Lubineau, G., El-Yagoubi, J. (2014). Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking, Corrosion, 70(1), pp. 87-94. [114] Gonzalez JL, Rivas D, Dorantes H, Vazquez P, G.W. (2015).Modeling and simulation of cracked area growth rate of hydrogen-induced cracking in pipeline steels. 10th international symposium on advanced science and technology in experimental mechanics-Japan. [115] Brouwer, R.C., de Mul, L.M., van den Handel, G. (1995). Modelling hydrogen induced crack growth: validation by comparison with experiment, NACE International, Houston, TX (United States). [116] Hara, T., Asahi, H., Ogawa, H. (2004). Conditions of Hydrogen-Induced Corrosion Occurrence of X65 Grade Line Pipe Steels in Sour Environments, December 2004, Corrosion, 60 (12).

N OMENCLATURE

A

Austenite

AcC

Accelerated Cooling

AIDE

Adsorption-Induced Dislocation Emission

44

Made with FlippingBook - Online Brochure Maker