Issue 60

A. Elakhras et alii, Frattura ed Integrità Strutturale, 60 (2022) 73-88; DOI: 10.3221/IGF-ESIS.60.06

DOI: 10.1088/1757-899X/596/1/012001. [18] Bažant, Z.P., Yu, Q., Zi, G. (2002). Choice of standard fracture test for concrete and its statistical evaluation, Int. J. Fract., 118(4), pp. 303–337, DOI: 10.1023/A. [19] Hillerborg, A., Modéer, M., Petersson, P.E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., 6(6), pp. 773–781, DOI: 10.1016/0008-8846(76)90007-7. [20] Bažant, Z.P., Oh, B.H. (1983). Crack band theory for fracture of concrete, Mater. Struct., 16(May), pp. 155–177, DOI: 10.1007/BF02486267. [21] Jenq, Y.S., Shah, S.P. (1985). A fracture toughness criterion for concrete, Eng. Fract. Mech., 21(5), pp. 1055–1069, DOI: 10.1016/0013-7944(85)90009-8. [22] Bažant, Z.P., Yu, Q. (2009). Universal size effect law and effect of crack depth on quasi-brittle structure strength, J. Eng. Mech., 135(2), pp. 78–84, DOI: 10.1061/(ASCE)0733-9399(2009)135:2(78). [23] Han, X., Chen, Y., Xiao, Q., Cui, K., Chen, Q., Li, C., Qiu, Z. (2021). Determination of concrete strength and toughness from notched 3 PB specimens of same depth but various span-depth ratios, Eng. Fract. Mech., 245, DOI: 10.1016/j.engfracmech.2021.107589. [24] Jenq, Y.S., Shah, S.P. (1986). Crack propagation in fiber reinforced concrete, J. Struct. Eng. Am. Soc. Civ. Eng., 112(1), pp. 19–34. [25] Hillerborg, A. (1985). The theoretical basis of a method to determine the fracture energy Gf of concrete, Mater. Struct., 18(106), pp. 291–296. [26] Ouyang, C., Tang, T., Shah, S.P. (1996). Relationship between fracture parameters from two parameter fracture model and from size effect model, Mater. Struct., 29(2), pp. 79–86, DOI: 10.1007/bf02486197. [27] Park, K., Paulino, G.H., Roesler, J. (2010). Cohesive fracture model for functionally graded fiber reinforced concrete, Cem. Concr. Res., 40(6), pp. 956–965, DOI: 10.1016/j.cemconres.2010.02.004. [28] Nazari, A., Sanjayan, J.G. (2015). Stress intensity factor against fracture toughness in functionally graded geopolymers, Arch. Civ. Mech. Eng., , pp. 1–10, DOI: 10.1016/j.acme.2015.06.005. [29] El-Sagheer, I., Abd-Elhady, A.A., Sallam, H.E.D.M., Naga, S.A.R. (2021). An assessment of ASTM E1922 for measuring the translaminar fracture toughness of laminated polymer matrix composite materials, Polymers (Basel)., 13(18), DOI: 10.3390/polym13183129. [30] Al Hazmi, H.S.J., Al Hazmi, W.H., Shubaili, M.A., Sallam, H.E.M. (2012). Fracture energy of hybrid polypropylene- steel fiber high strength concrete, WIT Trans. Built Environ., 124, pp. 309–318, DOI: 10.2495/HPSM120271. [31] Sallam, H.E.D.M., Mubaraki, M., Yusoff, N.I.M. (2014). Application of the maximum undamaged defect size (dmax) concept in fiber-reinforced concrete pavements, Arab. J. Sci. Eng., 39(12), pp. 8499–8506, DOI: 10.1007/s13369-014-1400-4. [32] ACI 211.1-91. (2009). Standard practice for selecting proportions for normal, heavyweight, and mass concrete, Am. Concr. Inst., (Reapproved 2009), pp. 1–38. [33] BS EN 12390-3:2019. (2019). Testing hardened concrete- Compressive strength of test specimens, BSI Stand. Publ. London. [34] BS EN 12390-6:2009. (2009). Testing hardened concrete - Tensile splitting strength of test specimens, BSI Stand. Publ. London. [35] Othman, M.A., El-Emam, H.M., Seleem, M.H., Sallam, H.E.M., Moawad, M. (2021). Flexural behavior of functionally graded concrete beams with different patterns, Arch. Civ. Mech. Eng., 21(4), DOI: 10.1007/s43452-021-00317-0. [36] Dupont, D., Vandewalle, L. (2005). Distribution of steel fibres in rectangular sections, Cem. Concr. Compos. 27, pp. 391–398, DOI: 10.1016/j.cemconcomp.2004.03.005. [37] Kazemi, M.T., Golsorkhtabar, H., Beygi, M.H.A.A., Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods, Constr. Build. Mater., 142, pp. 482– 489, DOI: 10.1016/j.conbuildmat.2017.03.089. [38] Ahmad, I., Qing, L., Khan, S., Cao, G., Ijaz, N., Mu, R. (2021). Experimental investigations on fracture parameters of random and aligned steel fiber reinforced cementitious composites, Constr. Build. Mater., 284, DOI: 10.1016/j.conbuildmat.2021.122680. [39] ASTM D7264/D7264M-15. (2015). Standard test method for flexural properties of Polymer Matrix Composite Materials, Annu. B. ASTM Stand., pp. 1–11, DOI: 10.1520/D7264_D7264M-15. [40] ASTM C1609/C1609M-12. (2013). Standard test method for flexural performance of fiber-reinforced concrete ( Using beam with third-point loading ) 1, ASTM Stand., 12(C 1609/C 1609M-12), pp. 1–8, DOI: 10.1520/C1609. [41] ACI 544.4R-88. (2009). Design considerations for steel fiber reinforced, ACI Man. Concr. Pract.

87

Made with FlippingBook flipbook maker