Issue 60
F. Greco et alii, Frattura ed Integrità Strutturale, 60 (2022) 464-487; DOI: 10.3221/IGF-ESIS.60.32
Italian Building Code (NTC2008). Directive of the Prime Minister, 9/02/2011. G.U. no. 47, 26/02/2011 (suppl. ord. no. 54) (in Italian). [10] Saisi, A., Gentile, C. (2015). Post-earthquake diagnostic investigation of a historic masonry tower, J. Cult. Herit., 16(4), pp. 602–609, DOI: 10.1016/j.culher.2014.09.002. [11] Bosiljkov, V., Uranjek, M., Žarni ć , R., Bokan-Bosiljkov, V. (2010). An integrated diagnostic approach for the assessment of historic masonry structures, J. Cult. Herit., 11(3), pp. 239–249, DOI: 10.1016/j.culher.2009.11.007. [12] Valente, M., Milani, G. (2016). Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM, Constr. Build. Mater., 108, pp. 74–104, DOI: 10.1016/j.conbuildmat.2016.01.025. [13] Lagomarsino, S., Penna, A., Galasco, A., Cattari, S. (2013). TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings, Eng. Struct., 56, pp. 1787–99, DOI: 10.1016/j.engstruct.2013.08.002. [14] Angelillo, M., Lourenço, P.B., Milani, G. (2014).Masonry behaviour and modelling., pp. 1–26. [15] Gilbert, M., Casapulla, C., Ahmed, H.M. (2006). Limit analysis of masonry block structures with non-associative frictional joints using linear programming, Comput. Struct., 84(13–14), pp. 873–887, DOI: 10.1016/j.compstruc.2006.02.005. [16] Atamturktur, S., Laman, J.A. (2012). Finite element model correlation and calibration of historic masonry monuments: review, Struct. Des. Tall Spec. Build., 21(2), pp. 96–113, DOI: 10.1002/tal.577. [17] D’Altri, A.M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G., de Miranda, S. (2020). Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification, Arch. Comput. Methods Eng., 27(4), pp. 1153–85, DOI: 10.1007/s11831-019-09351-x. [18] Macorini, L., Izzuddin, B.A. (2011). A non-linear interface element for 3D mesoscale analysis of brick-masonry structures, Int. J. Numer. Methods Eng., 85(12), pp. 1584–608, DOI: 10.1002/nme.3046. [19] Portioli, F., Casapulla, C., Gilbert, M., Cascini, L. (2014). Limit analysis of 3D masonry block structures with non- associative frictional joints using cone programming, Comput. Struct., 143, pp. 108–121, DOI: 10.1016/j.compstruc.2014.07.010. [20] Serpieri, R., Albarella, M., Sacco, E. (2017). A 3D microstructured cohesive–frictional interface model and its rational calibration for the analysis of masonry panels, Int. J. Solids Struct., 122–123, pp. 110–127, DOI: 10.1016/j.ijsolstr.2017.06.006. [21] Marfia, S., Sacco, E. (2012). Multiscale damage contact-friction model for periodic masonry walls, Comput. Methods Appl. Mech. Eng., 205–208, pp. 189–203, DOI: 10.1016/j.cma.2010.12.024. [22] Petracca, M., Pelà, L., Rossi, R., Oller, S., Camata, G., Spacone, E. (2016). Regularization of first order computational homogenization for multiscale analysis of masonry structures, Comput. Mech., 57(2), pp. 257–276, DOI: 10.1007/s00466-015-1230-6. [23] Leonetti, L., Greco, F., Trovalusci, P., Luciano, R., Masiani, R. (2018). A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures, Compos. Part B Eng., 141, pp. 50–9, DOI: 10.1016/j.compositesb.2017.12.025. [24] Luciano, R., Sacco, E. (1998). A damage model for masonry structures, Eur. J. Mech. - A/Solids, 17(2), pp. 285–303, DOI: 10.1016/S0997-7538(98)80087-9. [25] Massart, T.J., Peerlings, R.H.J., Geers, M.G.D. (2007). Structural Damage Analysis of Masonry Walls using Computational Homogenization, Int. J. Damage Mech., 16(2), pp. 199–226, DOI: 10.1177/1056789506064943. [26] Belmouden, Y., Lestuzzi, P. (2009). An equivalent frame model for seismic analysis of masonry and reinforced concrete buildings, Constr. Build. Mater., 23(1), pp. 40–53, DOI: 10.1016/j.conbuildmat.2007.10.023. [27] Quagliarini, E., Maracchini, G., Clementi, F. (2017). Uses and limits of the Equivalent Frame Model on existing unreinforced masonry buildings for assessing their seismic risk: A review, J. Build. Eng., 10, pp. 166–182, DOI: 10.1016/j.jobe.2017.03.004. [28] Gagliardo, R., Cascini, L., Portioli, F., Landolfo, R., Tomaselli, G., Malena, M., de Felice, G. (2019). Rigid block and finite element analysis of settlement-induced failure mechanisms in historic masonry wall panels, Frat. Ed Integrità Strutt., 14(51), pp. 517–533, DOI: 10.3221/IGF-ESIS.51.39. [29] Chiozzi, A., Grillanda, N., Milani, G., Tralli, A. (2019). NURBS-based kinematic limit analysis of FRP-reinforced masonry walls with out-of-plane loading, Frat. Ed Integrità Strutt., 14(51), pp. 9–23, DOI: 10.3221/IGF-ESIS.51.02. [30] Caporale, A., Luciano, R. (2012). Limit analysis of masonry arches with finite compressive strength and externally bonded reinforcement, Compos. Part B Eng., 43(8), pp. 3131–3145, DOI: 10.1016/j.compositesb.2012.04.015. [31] Caporale, A., Feo, L., Luciano, R. (2012). Limit analysis of FRP strengthened masonry arches via nonlinear and linear programming, Compos. Part B Eng., 43(2), pp. 439–446, DOI: 10.1016/j.compositesb.2011.05.019. [32] Greco, F., Luciano, R., Serino, G., Vaiana, N. (2018). A mixed explicit–implicit time integration approach for nonlinear
485
Made with FlippingBook flipbook maker