PSI - Issue 59

130 Hryhoriy Nykyforchyn et al. / Procedia Structural Integrity 59 (2024) 125–130 6 Hryhoriy Nykyforchyn, Oleksandr Tsyrulnyk, Oleh Venhryniuk, Olha Zvirko / Structural Integrity Procedia 00 (2019) 000 – 000

Сabrini, M., Sinigaglia, E., Spinelli, C., Tarenzi, M., Testa, C., Bolzoni, F.M., 2019. Hydrogen embrittlement evaluation of micro alloyed steels by means of J-integral curve. Materials 12: 1843, 1 – 17. Campari, A., Ustolin, F., Alvaro, A., Paltrinieri, N., 2023. A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. International Journal of Hydrogen Energy 48(90), 35316 – 35346. Chatzidouros, E.V., Traidia, A., Devarapalli, R.S., Pantelis, D.I., Steriotis, T.A., Jouiad, M., 2018. Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions. International Journal of Hydrogen Energy 43(11), 5747 – 5759. Dmytrakh, I.M., Syrotyuk, A.M., Leshchak, R.L., 2023. Special diagram for hydrogen effect evaluation on mechanical characterizations of pipeline steel. Journal of Materials Engineering and Performance. Fassina, P., Bolzoni, F., Fumagalli, G., Lazzari, L., Vergani, L., Sciuccati, A., 2011. Influence of Hydrogen and Low Temperature on Pipeline Steels Mechanical Behaviour. Procedia Engineering 10, 3226-3234. Gredil, M. I., 2008. Operating degradation of gas-main pipeline steels. Metallofizika i Noveishie Tekhnologii 30(SPEC. ISS.), 397 – 406. Hoyos, J.J., Masoumi, M., Pereira, V.F., Tschiptschin, A.P., Paes, M.T.P., Avila, J.A., 2019. Influence of hydrogen on the microstructure and fracture toughness of friction stir welded plates of API 5L X80 pipeline steel. International Journal of Hydrogen Energy 44(41), 23458 23471. Hoschke, J., Chowdhury, M. F. W., Venezuela, J., Atrens, A., 2023. A review of hydrogen embrittlement in gas transmission pipeline steels. Corrosion Reviews 41(3), 277 – 317. Kyriakopoulou, H.P., Karmiris-Obratanski, P., Tazedakis, A.S., Daniolos, N.M., Dourdounis, E.C., Manolakos, D.E., Pantelis, D., 2020. Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel. Micromachines 11:20, 1 – 20. Laureys, A., Depraetere, R., Cauwels, M., Depover, T., Hertelé, S., Verbeken, K., 2022. Use of existing steel pipeline infras tructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation. Journal of Natural Gas Science and Engineering 101:104534. Meng, B., Gu, C., Zhang, L., Zhou, C., Li, X., Zhao, Y., Zheng, J., Chen, X., Han, Y., 2017. Hydrogen effects on X80 pipeline steel in high pressure natural gas/hydrogen mixtures. International Journal of Hydrogen Energy 42(11), 7404 – 7412. Nguyen, T. T., Bae, K.-O., Jaeyeong, P., Nahm, S. H., Baek, U. B., 2022. Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels. International Journal of Hydrogen Energy 47(73), 31499 – 31520. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Tsyrulnyk, O., Krechkovska, H., 2021. Pipeline durability and integrity issues at hydrogen transport via natural gas distribution network. Procedia Structural Integrity 33 (C), 646 – 651. Nykyforchyn, H., Zvirko, O., Hredil, M., Krechkovska, H., Tsyrulnyk, O., Student, O., Unigovskyi, L., 2022a. Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport. Frattura ed Integrita Strutturale 59, 396 – 404. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Hredil, M., Krechkovska, H., Student, O., Tsyrulnyk, O., 2022b. Susceptibility of carbon pipeline steels operated in natural gas distribution network to hydrogen-induced cracking. Procedia Structural Integrity 36, 306 – 312. Ohaeri, E., Eduok, U., Szpunar, J., 2018. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy 43(31), 14584 – 14617. Phan, H.C., Le-Thanh, L., Nguyen-Xuan, H., 2022. A semi-empirical approach and uncertainty analysis to pipes under hydrogen embrittlement degradation. International Journal of Hydrogen Energy 47(8), 5677 – 5691. Pluvinage, G., Toth, L., Capelle, J., 2021. Effects of hydrogen addition on design, maintenance and surveillance of gas networks. Processes 9(7):1219. Toribio, J., Vergara, D., Lorenzo, M., 2016. Influence of loading rate on the hydrogen-assisted micro-damage in bluntly notched samples of pearlitic steel. Metals 6(1):11. Tsyrul’nyk, О.Т., Kret, N.V., Voloshyn, V.A., Zvirko. O. I., 2018. A procedure of laborato ry degradation of structural steels. Materials Science 53(5), 674 – 683. Voloshyn, V.A., Zvirko, O.I., Sydor, P.Y., 2015. Influence of the compositions of neutral soil media on the corrosion cracking of pipe steel. Materials Science 50(5), 44 – 47. Zvirko, O.I., 2021. In-Service Degradation of Structural Steels (A Survey). Materials Science 57(3), 319 – 330. Zvirko, O.I., Nykyforchyn, H.M., Tsyrulnyk, O.T., Voloshyn, V.A., Venhrynyuk, O.I., 2022. In-service degradation of structural steels under cyclic loading. Materials Science 58(2), 222 – 228. Zvirko, O., Mytsyk, B., Nykyforchyn, H., Tsyrulnyk, O., Kost’, Y., 2023 a. Application of the various methods for assessment of in-service degradation of pipeline steel. Mechanics of Advanced Materials and Structures 30(24), 5058 – 5067. Zvirko, O.I., Lipec, S., Vengreniuk, O.I., Dzioba, I., 2023b. Evaluation of the stress-strain state at the crack tip in casing pipes based on numerical simulation. Materials Science 58(4), 460 – 465.

Made with FlippingBook - Online Brochure Maker