PSI - Issue 59

M. Karuskevich et al. / Procedia Structural Integrity 59 (2024) 642–649 M. Karuskevich et al. / Structural Integrity Procedia 00 (2019) 000 – 000

649

8

Cheng, G. A., 1998. Fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion. Int. J. Fatigue 1998, 20, 495 – 501. https://doi.org/10.1016/S0142-1123(98)00018-8 Chen, Hua-Peng & Ni, Yi-Qing., 2018. Structural Health Monitoring of Large Civil Engineering Structures. Wiley Online Books. pp.328. https://doi.org/10.1002/9781119166641.ch1 Fatemi, A., Yang, L., 1998. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue 20(1), 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9 Hectors, K., De Waele, W., 2021. Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review. Metals 11, 204. https://doi.org/10.3390/met11020204 Karuskevich, M., Karuskevich, O., Maslak, T., Schepak, S., 2012. Extrusion/intrusion structures as quantitative indicators of accumulated fatigue damage. International Journal of Fatigue (39), 116 – 121 https://doi.org/10.1016/j.ijfatigue.2011.02.007 Li, Z.Y., Han, Y.Z., Yao, X.H., 2021. A Structure design of CFRP rear pressure bulkhead without stiffeners. 32nd Congress of the International Council of the Aeronautical Sciences (ICAS 2021). Shanghai, China, 2989-3007. Lu, Z., Zhao, J.-Y., Zhou, C.-Y., He, X.-H., 2020. Optimization Design of a Small-Sized Cruciform Specimen for Biaxial Fatigue Testing. Metals 10, 1148. https://doi.org/10.3390/met10091148 Man, J., Obrtlík, K., Polák, J., 2009. Extrusions and Intrusions in Fatigued Metals. Part 1. State of the art and history. Philosophical Magazine 89(16), 1295 – 1336. https://doi.org/10.1080/14786430902917616 Maslak, T. and Karuskevich, M., 2023. Introduction of Crystallographic Factor into the Von Mises Equivalent Stress Calculation. Fatigue Fract Eng Mater Struct 46(3), 1211-1214. https://doi.org/10.1111/ffe.13940 Miner, M. A., 1945. Cumulative Damage in Fatigue. Journal of Applied Mechanics 3, 159 – 164. Mitukiewicz, G., Kuzalski, C., Goszczak, J., Leyko, J., Dimitrova, Z., Batory, D., 2021. Analysis of the Cruciform Sample Shapes for Bi-Axial Tensile Tests Based on the Geometries Currently Presented in the Literature. Advances in Science and Technology Research Journal 15(2), 156-168. https://doi.org/10.12913/22998624/135359 Pejkowski, Ł., Karuskevich, M., Maslak , T., 2019. Extrusion/intrusion structure as a fatigue indicator for uniaxial and multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 42(10), 2315 – 2324. https://doi.org/10.1111/ffe.13066 Rooy, E. L., 1990. Introduction to Aluminum and Aluminum Alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol 2, ASM Handbook Committee, ASM International, 3 – 14. https://doi.org/10.31399/asm.hb.v02.a0001057 Socie, D., Marquis, G., 2000. Multia xial Fatigue, in “Multiaxial Fatigue”, SAE, pp.502. https://saemobilus.sae.org/content/R-234/ Von Mises, R., 9 . Mechanik der festen Körper im plastisch deformablen Zustand. Nachr. Königl. Ges. Wiss. Göttingen, Math. -phys. Klasse, pp. 582 – 592. Zasimchuk, E.E., Radchenko, A.I., Karuskevich, M.V., 1992. Single-Crystal as an Indicator of Fatigue Damage. Fatigue Fract. Eng. Mater. Struct. 15(12), 1281 – 1283. https://doi.org/10.1111/j.1460-2695.1992.tb01263.x

Made with FlippingBook - Online Brochure Maker